
Dispatch Scheduling of Automated Telescopes
Robert B. Denny 1

DC-3 Dreams SP, Mesa, Arizona

Abstract: Automated telescope scheduling systems have traditionally focused on optimizing the use of the
observatory, minimizing overhead and maximizing shutter-open time. However, most observatories do not enjoy
consistently good skies. Conditions can change significantly during an observing session, leading to schedule breakage.
In addition, science observing may require prompt follow-up observations that arise during a night’s observing. These
issues give rise to the need for a scheduling system that is capable of recovering from periods of bad skies, wind, etc.,
and of integrating newly added observations during operation, all without operator intervention. The concept of “just-
in-time” or dispatch scheduling, where the scheduler dynamically makes a “best” choice for the next observation, will
be discussed. A dispatch scheduler was constructed, tested initially (as described in the previous version of this paper),
deployed and supported as a commercial product then revised per user feedback and ongoing research. This experience
exposed a weakness in the design. A solution was found and validated. The solution also improved the overall
efficiency of the scheduler. This paper will describe the revised scheduler, the specific weakness encountered, and the
solution to this weakness, Rising Plan Delay.

Revised (3): May, 2006
© 2006, Robert B. Denny, Mesa, AZ.

1 Introduction

The process of acquiring data for both astronomical science
and artistic astroimaging involves planning, scheduling, and
observing. These three phases of data acquisition may be
viewed as what, when, and how, respectively. Managing
acquired data (where) is a separate topic that will not be
addressed in this paper. When designing tools for data
acquisition, it is important to keep the three considered
activities clearly separated.

1. Planning establishes what data is needed for the
mission, and may place constraints that affect
acquisition timing in order to assure that the data meets
the minimum quality needed to support the mission.
Typically, planning is done by the investigator or
astronomer.

2. Scheduling makes the decision as to when requested
data can and should be acquired, in order to meet the
constraints. This is the role of a scheduler.

3. Observing involves the control of the observatory
instruments and software to capture a package of data
(which may be multiple images at multiple
wavelengths, for example). The use of a scheduler
implies that a sequencer is used to automate the data
acquisition process when directed by the scheduler.

This paper, and the engineering work it describes, focuses
only on scheduling. The implications of this may not be
immediately obvious. Suppose a request is submitted for an
observation with coordinates and constraints that make it
impossible to observe at any time during the year regardless
of weather. It is not the scheduler’s job to alert the user that

he has entered an impossible request. It simply will never
schedule the impossible request. It is the job of the
astronomer (and any planning tool) to create an observing
plan that is practical as well as supportive of the mission.
One can envision multiple specialized planning tools that
feed their requests into the scheduler through a common
protocol. As stated, these tools are not a topic of this paper.

2 Background

During the initial phase of this project, it was found that
virtually all of the research on scheduling of resources had
optimal resource utilization as the goal. This typically
involves a complex time-consuming process, and applied to
astronomical observing, produces a static schedule for an
entire night’s observing. The success of such an optimized
static schedule depends on (a) problem-free execution of
each observation, (b) perfect knowledge of the time duration
needed for each observation, and (c) perfect fore-knowledge
of the weather throughout the night.

Once an observation fails, any linked observations also
must fail, leaving holes in the schedule. If the telescope
needs an un-forecast refocusing, the schedule is broken,
requiring observations (and possibly linked observations) to
be skipped. If the sky conditions or weather changes, it can
eliminate an entire class of observations from consideration
due to their constraints being violated. For example, a thin
cirrus layer could preclude all-sky photometry, but there
could be other as-yet unscheduled observations that could
be made without deleterious effect.

These considerations led to the desire to make the
scheduler dynamic in some way, able to adapt to changing

conditions, new requests, and acquisition errors, while still
maintaining reasonable efficiency. Further research in this
direction produced the Steele and Carter paper (ref. 1). The
concepts discussed in their paper provided basic concepts
for the design of the present scheduler. However, very little
detail is contained in Steele and Carter, and the difficult
problem of handling linked observations is not treated at all.
The basic concepts presented in their paper will be briefly
described in the following sections. No claim of originality
is made for these concepts.

2.1 Scheduler Design

Steele and Carter identify the following three criteria for a
“good schedule”: (a) fairness, (b) efficiency, and (c)
sensibility. A fair schedule balances time allocations
between users such that they all share good and bad
observing times equitably. An efficient schedule is one that
maximizes instrument utilization and strives to match
observations with required conditions. A sensible schedule
is one that attempts only those observations that are possible
under the current observing conditions.

The ACP Scheduler (ACPS) is a practical adaptation
of Steele and Carter’s concepts combined with additional
features and practicalities needed to turn their basic ideas
into a commercial-class scheduling engine. It is designed to
handle observation requests from multiple users. Requests
are kept in a permanent relational database store. The
requests can be entered months ahead of the time at which
constraints will first be met, or minutes before they are
needed.

Throughout this paper, many of the fine-grained details
and features of the scheduler are omitted for clarity. They
don’t affect the basic conceptual knowledge gained from
user experiences and simulations.

Table 1. Scheduler Data Hierarchy

User Top-level node. Represents a user or using
organization, not necessarily an observer or
investigator

Project Child of User. Represents a scientific
project that may require multiple sets of
data

Plan Child of Project. This is the basic
schedulable unit. It represents one or more
observations that must be performed as a
group and within a single night.

Observation Child of plan. Represents a single target
beginning at a single time. This is the
basic unit of work for the observatory.
Constraints are applied to observations.
Linked observations are entered as separate
observations with the same parent plan,
with specified time separations.

ImageSet Child of Observation. Represents one or
more images to be acquired back-to-back
and at a single wavelength.

In order to understand the descriptions of scheduler
behavior in later sections, it is necessary to define some
terminology. The scheduler request database is hierarchical

and consists of the following node types, as shown in Table
1 above.

The simplest plan is one with a single observation and a
single image-set that specifies a single image. Plans with
more than one observation form linked observations with a
specified time interval between them.

Each observation carries with it a set of constraints that
limit the times at which the observation can be taken.
Example constraints include altitude, air mass, seeing, moon
phase/elongation, and sky condition. The scheduler supports
an open-ended set of constraints through a plug-in facility.
For this paper, only a basic “above the horizon” altitude
constraint was used in simulations. A more complex set of
constraints would serve only to make it more difficult to
interpret results.

Priorities are supported, and are applied to plans. Rather
than impose a fixed priority range on everyone, each User is
allowed to assign any range of priority values to their plans.
During the scheduling cycle, (see below) priorities are
normalized in a way that maximizes fairness between Users.

2.2 System Architecture

Figure 1 is a software block diagram of a robotic
observatory controlled by the scheduler and a sequencer,
augmented by user tools for browsing the request database
and for planning observing requests.

The sequencer is responsible for automatically
manipulating all of the observatory instruments and
equipment needed to acquire the data for each observation
(the basic unit of work for the observatory). The scheduler
was designed with a standard sequencer interface, allowing
it to potentially be used with a variety of robotic observatory
control systems. Two sequencers have been developed at
this point: (1) a simulator sequencer for research and testing,
and (2) a commercial observatory control system1.

Data

Browser

Dispatcher

Planner

Constraint
Plugins

DispatcherDispatcherSequencers

Scheduler

Figure 1. Software Block Diagram

1 ACP Observatory Control Software, developed by the author.

The scheduler consists of a dispatcher and a set of
constraint plug-ins. As described elsewhere, constraints can
be separately developed, allowing for addition of custom
constraints for special applications. The dispatcher is
responsible for selecting plans to start, and for dispatching
observations to the active sequencer.

The centerpiece of the system is a relational database
which contains all of the observing requests and the current
states of each. All of the components of the system
communicate through the database via an operating system
vendor supplied database engine plus a wrapper object that
isolates the system components from low level database
operations and Structured Query Language (SQL)
statements. Thus, the database looks like a special purpose
black box with all storage and retrieval details hidden from
the system components.

3 Scheduler Operation - Overview

Fundamentally, ACPS is a dispatch scheduler. At each
scheduling cycle, it decides which of the eligible plans to
start next. Once started, a plan must run to completion or
fail completely. If a plan fails, it is re-queued and will be
attempted again later. It is possible (via a user control) to
give preference to failed (and thus re-queued) plans with
respect to those that have never been started.

When an observation is completed, the scheduler looks
to see if one or more new plans can be started (based on
constraints) before an already-running plan’s next linked
observation comes up for acquisition. At a minimum, the
first observation of a candidate new plan must fit into the
time remaining before any already-scheduled observation
(belonging to any already-started plan). If a candidate new
plan has multiple linked observations, all of them are
checked against all of the linked observations in already-
started plans. If there are any clashes, the candidate plan
will not be considered. There is no requirement that linked
observations be spaced at regular intervals.

3.1 Efficiency Function

After all eligible plans are checked for constraints and
timing clashes with running plans, the remaining eligible
plans form the set from which the scheduler picks the “best”
plan to start in this cycle. As described in detail below, this
is done by applying an efficiency function to each plan. The
plan with the highest efficiency index will be started. Of
course, if only one plan remains after the preceding tests, it
will be started without qualification.

3.2 Concurrent plan Execution

It is important to understand that multiple plans may be
active at any point in time. This will happen if any plan with
more than one linked observation is active. As we will see,
one of the scheduler’s important tasks is to avoid starting a
new plan if any of its observations would clash in time with
any of the linked observations of running plans.

Any point in time, the remainder of the night may
already have time slots reserved for doing linked
observations of running plans. These time slots are in
general irregularly spaced in time and occupy irregular
intervals of time as well. Thus, multiple plans may be
concurrently active, and this is an important feature of the
scheduler if it is to achieve its goal of efficiency.

4 Scheduling Cycle

The scheduler runs a continuous loop consisting of the
following steps (simplified for clarity):

1. Calculate estimated time spans of any newly added
plans

2. Normalize priorities.
3. Start any plans which have specified an absolute start

date/time, and for which that date/time has arrived. If
such a plan is started, send its first observation to the
Sequencer. Jump to (10).

4. Look to see if any already-started plans have an
observation that is due now. If so, send that observation
to the sequencer. Jump to (10).

5. Change unstarted plans that were previously vetoed and
deferred by constraints, and for which the deferral time
has expired, back to a status of pending (eligible to be
started now).

6. Change unstarted plans that were previously vetoed due
to a time clash back to a status of pending.

7. At this point, only eligible pending plans are left to
consider. For each of them:

A. Check to see if the entire plan can be completed
before sunrise if it were to be started now. If not,
defer the plan, removing it from consideration until
the next night.

B. Check each observation of the plan (if more than
one observation, the second and subsequent will
specify a time from the previous observation),
using the current time as a baseline, as follows:

1. Apply observer-specified constraints at the
(estimated) time. If constraints cannot be met,
veto the plan and move on to the next
candidate.

2. Test to see that the observation does not clash
with any observation belonging to an already-
started plan. If a clash is detected, veto the
plan and move on to the next.

C. For a rising plan, check to see if it can safely be
allowed to continue to rise even though it would
now be eligible. If so, defer it for a bit of time.

8. If there are any eligible (unstarted) plans left at this
point, pick the “best” one to start. This is the critical
operation, the one that determines the behavior of the
scheduler. We will expand on this below.

9. Send the first observation of the selected plan to
sequencer for data acquisition.

10. Wait for completion notification from sequencer.
11. Loop back to 1.

Priority normalization is done by converting each
User’s plan priorities into a new value such that the mean
priority of all of that User’s plans is 0.5. This scheme came
from Steele and Carter1. It is the fairest of all of the priority
schemes studied. It is done at every pass through the
scheduling loop to allow for any-time addition of new
requests which may change the range of priorities for the
submitting User.

Application of constraints and selecting the “best” next
plan to start are the core of the scheduling system, and are
discussed in detail below.

Step 7C above deserves additional explanation2. This
step tries to let a rising plan continue to rise even though all
of its constraints are met. Without this logic, an eligible plan
will be started as soon as its constraints are met. If it is
rising, this may not make the best use of the observatory, as
data acquired at higher elevations is usually of better
quality.

It should be noted that, after waiting for a dispatcher
wake cycle, additional plans may become eligible, and the
formerly single plan will have to contend with these newly
eligible plans via the Efficiency function. This could be an
advantage or disadvantage. Remember that, once a plan is
started, all of its time slots are reserved. Suppose a more
efficient plan has met constraints after the wake cycle.
Shouldn’t this one be run anyway? If the first plan had been
started immediately, it would have blocked the second one.
In general, it’s better to be faced with a choice of plans and
do the most efficient one.

In any case, once a plan has been chosen to start, all of
its observations’ time slots are reserved, and its first
observation is given to the sequencer to execute. As you
may recall, an observation applies to a single target and
consists of one or more image-sets, each of which comprises
one or more images at a single wavelength. The Sequencer
performs the slew to the target, perhaps checking the
pointing with a short validation and adjustment exposure,
then performs an auto-focus if requested or indicated, and
activates the auto-guider if applicable. It then commands the
imager to acquire images per the image-sets, switching
filters as needed. Each filter switch necessitates (at a
minimum) a refocus, even for supposedly par-focal filters.
In addition, if the image needs to be guided, and if the
guiding sensor is behind the filters, the guider must be re-
started with a new exposure/cycle time. Focus changes
arising from a filter change are handled either by a table of
focus offsets or by auto-focus (the latter is inefficient!).

2 See section 7 Rising Plan Delay

5 Scheduling Rules

Early simulations led to a couple of basic rules that
guided the design. Recall that the plan is the basic
schedulable unit, and may consist of multiple linked
observations (targets) with specified time intervals between
them. These scheduling rules are:

1. Once a plan has been started, it must either run to
completion (in one night) or fail completely3. In other
words, a plan’s observations must be acquired as a unit.
Time spacing between linked observations, and a
possible “hard start time” needed for target phasing
constraints, dictate this rule.

2. Time separation of a plan’s linked observations must
include a non-zero time tolerance. The scheduler is not
perfect; therefore the observer must indicate the
allowable variation between linked observations for
which the acquired data will still be usable.

3. Once a plan has been started, its linked observations
must be considered inviolable. Nothing can pre-empt a
running plan’s scheduled linked observations.

For the simple case, a plan that has a single observation, rule
1 above is intuitively obvious. However, for a plan that has
multiple linked observations, the rules mean that a plan
cannot be started unless the following conditions are met:

1. All of the plan’s linked observations’ constraints can be
met (at their scheduled time) if the plan is started now.

2. None of the plan’s linked observations will clash with
those of plans that have already been started, regardless
of their priority.

These rules lead to the following corollaries:

1. Constraints must be applied to all observations of a
candidate plan before starting it. The proposed plan
start time, the estimated times needed to execute each
of its observations, and the specified time interval
between its observations all must be used to project
forward each observation in time, and compute its
constraint for that time.

2. A higher priority unstarted plan can never force the
failure of a lower priority running plan; it can only
prevent a lower priority plan from getting started.

3. The projected times for starting each of the candidate
plan’s observations must be checked that they do not
overlap/clash with the nominal start times and time
spans of the remaining linked observations of plans that
have already been started.

4. Once constraints and timing-clash checks have been
applied to an entire plan, it can be started with a high
degree of confidence that it will complete successfully.
There is, however, a non-zero chance that it will fail
because a constraint is not met at the actual time of

3 See section 5.1 Best-Efforts Plans wherein this rule may be optionally
relaxed.

observation. This condition can arise as a result of
imperfect estimates of times needed for other
observations.

It should be clear that constraints must first be applied to all
observations of each unstarted plan, with forward time
projection4. If any constraints are not met, the observation
and its parent plan are vetoed and eliminated from
consideration during this scheduling pass. The plan will be
re-queued and reconsidered in subsequent scheduling
passes, as the constraints could be met at this later time.
Thus, the veto processes eliminates plans that cannot be
started at the current time.

5.1 Best-Efforts Plans

Field experience with the scheduler revealed that
Scheduling Rule 1 (Plans must complete in a single night)
resulted in a limitation that made some types of observing
impractical. For example, data acquisition for photometry
applications often requires a time series which extends over
a long period of time. A plan with linked observations does
provide time series capability, however if the time series
needs to be “long”, its chances of being successfully started
under Scheduling Rule 1 decrease.

The nature of a dispatch scheduler is such that the
starting time of a plan cannot be predicted. This limits time
series to the shortest possible length that can fit into a single
night when the plan is started at the latest possible time.
This limitation led to a requirement for modifying
Scheduling Rule 1 to allow a plan to be started without
checking to see that it could be completed before being
stopped by constraints or dawn. In addition, while the plan
is running, a veto or failure of a linked observation in the
time series causes the Plan to be successfully completed, not
failed.

This mode of treating plans could be called “do as
much as you can” or “best-efforts”. The revised scheduler
was modified to include an optional best-efforts flag on
plans. If the plan is flagged as best-efforts then (a) it will be
eligible to be started based only on its first observation’s
constraints being met, and (b) while running, if a linked
observation is vetoed or fails, the Plan is marked completed
instead of failed.

6 Application of Constraints

The scheduler has a standard set of constraints (see Table 2)
that may be applied. If no constraints are applied, plans will
be eligible based solely on their time span, astronomical
night (Sun below –18 degrees), and instrument limitations
retrieved from the Sequencer.

Besides testing constraints themselves, the constraint
plug-ins also calculate a time estimate for which the “allow”
or “veto” condition will remain. This is very important for
scheduling efficiency, as the latter allows plans to be

4 See section 6 Application of Constraints for details.

skipped during dispatching until the expiry time for the veto
state, and the former provides time limit guidance for step 7-
C in Section 4 Scheduling Cycle.

Table 2. Standard Constraints

Horizon Observation must be made above the given
elevation (with respect to the local
mathematical horizon)

Air Mass Observation must be made at or below the
given air mass.

Sky Quality Observation must be made at given (or
better) sky quality. Four sky qualities are
defined: excellent, good, fair, and poor.

Dark Time Observation must be made with Moon
“down”, namely 2 degrees below the
mathematical horizon

Moon
Distance

Observation must be made when the target
and the Moon are separated by at least the
given angular distance

Moon
Avoidance

Observation must be made at or below the
given moonlight level. This is expressed in
terms of a Lorentzian weighting that is a
combination of angular distance from the
Moon and the illumination at its current
phase.

6.1 Strict versus Lenient Application

The first version of the scheduler applied constraints only
for the starting time of each observation, in order to
minimize scheduling overhead. This was found to be
insufficient for practical use. With this lenient application of
constraints, it is possible for an observation to fall out of
constraints during acquisition. Thus, at least some of the
acquired data could fail to meet the requirements of the
constraints.

In the revised scheduler, application of constraints was
changed to a strict model, wherein constraints are checked
for both the starting time and the estimated ending time of
each observation. Only if constraints are met at both of
those points in time is the observation considered eligible
for execution.

6.2 Custom Constraints

In addition, custom constraints can be added via a plug-
in API. Thus, applications with unusual requirements can be
supported without changes to the main dispatcher engine.
Custom constraints may be developed apart from the code
base for the scheduler, and simply dropped into a specific
directory. The next time the scheduler is started, the new
constraint plug-in is detected, additional tables and relations
are created in the schedule database, and the new constraint
will appear in the schedule browser’s user interface.

7 Rising Plan Delay

Real world experience and parallel simulations indicated a
significant weakness when the scheduler is under-
subscribed. Suppose that, during a particular dispatch cycle,
there is only one eligible plan left after application of
constraints. In this case the Efficiency function is not
applicable. There is but one “best” choice. That single plan
is dispatched immediately. As the run progresses through
the night, this increasingly happens very shortly after the
plan first meets its constraints, on the rise.

As a result, the plan will be started well east of the
optimum sky position, and the data will be acquired through
nearly the maximum air mass allowed by its constraints.
Figure 2 shows the typical behavior of a moderately loaded
dispatch scheduler without rising plan delay.

As the scheduler’s loading increases, this effect lessens
because it’s more likely that multiple plans will be eligible
in a dispatch cycle, at least one will be higher than it needs
to be, and the Efficiency function will be able to pick the
best one. The problem is absent in a heavily loaded situation
as there are always plans near the meridian and the
Efficiency function does its job well.

Figure 2. Meridian position with typical dispatcher

In principle, the solution to this problem involves letting
rising plans5 continue to rise even though they are eligible.
But how long should they be allowed to rise beyond the
point at which they can first be started? Clearly, a rising
plan cannot (or should not) be allowed to rise beyond any of
the following points:

1. The time at which it no longer meets its constraints
2. The time beyond which it would extend past dawn
3. The time at which it reaches transit

But there are other less obvious considerations. Suppose one
or more additional plans become eligible in the future? It is
possible that one of these newly eligible plans would be
selected by the Efficiency function in preference to the
delayed rising plan. If the selected plan’s first observation

5 The “coordinates” of an entire plan are given by its centroid as defined in
section 8.2 below.

exceeds the allowable times 1-3 above, the delayed rising
plan will fall out of constraints before this new plan’s first
observation completes. The delayed rising plan will never
be started.

It should be clear that the more heavily loaded the
scheduler is, the more likely the above scenario will arise.
Thus, in general, delaying a rising plan’s start while it rises
reduces its chance of being run. The longer it is delayed, and
thus the closer it gets to one of the limits 1-3 above, the
more likely it will not be run, or run past the meridian.

On the other hand, if this policy is applied evenly,
where all rising plans are delayed per the same policy, the
effect will be to shift the start times of all such plans toward
the future, improving their observing conditions.
Furthermore, at the start of the run there will be both rising
and setting plans. By delaying the rising plans, the
dispatcher will start with the setting plans, which is
desirable since they generally have shorter eligible lifetimes.

Finally, as the schedule becomes more loaded, there
will more likely be eligible plans in a more favorable
position, and these will be selected by the efficiency
function (see below) anyway. By allowing the less well
positioned plans to rise, the effect is the same as simply
keeping them eligible and letting the scheduler pick the
most favorable. So as the schedule becomes more heavily
loaded, the less will be the effect of delaying rising plans.
This was proven in the simulations.

The decision to delay a rising plan must take into
account the shortest of limits 1-3 above, and the potential
benefit of allowing it to rise further. Furthermore, the
amount of time to defer the rising plan (once it has been
decided to defer it in the first place) should be shorter than
the threshold of the time-left used to make the deferral
decision. This allows for some tolerance in time estimates.
Algorithm complexity could quickly reach a point of
diminishing returns while impacting scheduler performance.

Therefore, it was decided to implement a simple
algorithm for rising plan delay: If the plan’s centroid is
rising, and if there is more than 60 minutes remaining in the
shortest of limits 1-2 above, defer the plan. The deferral
time is the shortest of (a) the time to centroid transit, or (b) 1
hour before limits 1-2 above are reached.

Figure 3. Meridian position with rising plan delay

Figure 3 shows the behavior for the same set of requests
as Figure 2, but with the rising plan delay algorithm
included. The beneficial effects are clear. Note particularly
that more images were acquired (81 vs. 75) because the
westernmost plans were immediately started while the more
eastern ones were deferred for rising plan delay6. Extensive
simulations of this algorithm have shown that delaying
rising plans is surprisingly effective when loading is light,
and has an unexpectedly low impact on efficiency and total
number of targets acquired when loading is heavy.

8 Efficiency Function

After application of constraints and rising plan delays, each
remaining eligible plans is tested by computing the
efficiency index. The eligible plan with the highest
efficiency index is the one chosen to start now. The purpose
of the efficiency index calculation is to decide which plan to
start considering both the scientific priority and the best use
of the current observing conditions. This is done using an
Efficiency function of the form:

() ()nEn kkk∑ =
=

8

1
βΕ

where n indexes the plan under consideration, and k indexes
the eight efficiency terms described below.
This generic form is taken from Steele and Carter1.
However, the specific terms of this function, both the
semantics of some the efficiency terms Ei(n), as well as their
coefficient values ßi, differ in from Steele and Carter. In
addition, new efficiency terms were added after experience
gave rise to their need.

The knowledge gained via the simulations and user
feedback provided insight into the behavior of a dispatch
scheduler, and led to two sets of standard terms and ßi
coefficients (weights) suitable for most observing tasks.
These are described following the descriptions of the
individual terms, in section blah.

The scheduler also has a mode in which the user can
adjust the weights, giving complete flexibility. There is no
plug-in interface for adding efficiency terms; but individual
terms may be disabled by setting their weight to zero. By
varying the weights, the behavior of the scheduler can be
adjusted to meet virtually any need, or to conduct
engineering studies using the simulators.

After research, the details of which are beyond the
scope of this paper, the following efficiency terms/functions
were chosen for the scheduler:

8.1 Scientific Priority

The scheduler allows each User to assign their own
scientific priorities to their plans rather than forcing
everyone onto a single priority system. In order to assure
that allocation of the observatory is fair, each User’s

6 This was confirmed by inspecting the coverage charts; the run in Figure 2
failed to get the westernmost targets.

priorities are transformed into a normalized system where
the mean value of their priorities is 0.5:

5.01 =∑ =

N
pN

i i

where N is the total number of plans in the system for that
User. The normalized priority for each plan p is stored in the
scheduler’s database and used in the Efficiency function
calculation as shown below.

It is planned for the future to study whether the priority
of a plan should be scaled according to its number of linked
observations. This would assign a weight proportional to the
resources that the plan uses. A further refinement might be
to weight according to the observatory time needed for the
plan.

In any case, the candidate plan’s normalized priority p
is used to calculate the E1 term of the Efficiency function,
thus

)()(1 npnE =
A front panel control “Ignore Priority” is provided so

that the scheduler user can toggle between ß1=0 and the
standard ß1 value. This is useful in special situations where
the user wants to eliminate preference based on scientific
priority. It is ignored if the scheduler’s efficiency mode is
set to Custom. The control is ignored if the scheduler’s
efficiency mode is set to Custom.

8.2 Nearness to Transit Altitude

It is intuitively obvious that it is advantageous to
observe some objects at as low an airmass as possible. The
simple interpretation of this would imply an E function of
the form

()
°

=
90

)(
2

nAnE C

where AC(n) is the current altitude of the first observation of
the candidate plan n. However, this would unfairly favor
objects whose declination is near the latitude of the
observatory (as observed by Steele and Carter1). A better
criterion is the distance of the object from its transit altitude.
This implies an E function of the form

()
)(
)(

2 nA
nAnE

T

C=

where AC(n) and AT(n) are the current and transit altitudes of
the first observation of plan n.

But there is an additional consideration that is non-
intuitive but became obvious after early simulations: If the
candidate plan contains multiple linked observations of
different targets, it would be incorrect to use the current
altitude of the first (or any other) of the plan’s observations
in the above test.

Instead, the scheduler uses the centroid of all of the
plan’s linked observation equatorial coordinates as the

“coordinates” of the plan as a whole. The centroid
coordinates are then converted to altitude using the local
sidereal time (LST) projected forward from the current LST
by half of the plan’s calculated time span, yielding a
centroidal altitude Ā for the plan as a whole. Thus,

()
)(
)(

2 n
nnE

T

C

A
A

=

where ĀC(n) and ĀT(n) are the current and transit centroid
altitudes of plan n.

Simulations revealed that the centroid method is an
excellent way to treat a plan with multiple linked
observations at possibly different coordinates. It turns out
that the plan is most often started at an efficient time, and
the individual observations are done as closely as practical
to their transit altitude, on average.

In section 8.7 below, an experimental alternative to
Transit Altitude (called Highest Altitude) is discussed. If its
weight E7 is greater than zero, then E1 must be set to zero as
these two terms are mutually exclusive.

8.3 Slewing Overhead

It is more efficient to observe nearby targets when
possible, so a slewing overhead term is included in the
Efficiency function. Considering only the time needed to
slew to the target unfairly penalizes observations that take a
comparatively long time to complete. For example, if a
candidate observation is expected to take an hour to
complete, a thirty-second slew is not significant. If the
observation consists of a single ten-second exposure, the
thirty-second slew has a significant impact on efficiency.
Thus, slewing overhead is represented by an E function of
the form

)(
)(3

OS

O

tt
tnE
+

=

where tO is the estimated time needed to complete data
acquisition for the observation, and tS is the estimated
slewing time needed to get to the target coordinates of the
first observation of the candidate plan before starting data
acquisition. The sequencer provides the scheduler with a
time-to slew estimate, given a new target’s position, and this
is tS above.

Note that this term does not consider the time needed to
slew to possible subsequent linked observations in the
candidate plan. There is no way to know the starting point
for such slews, as the scheduler is intrinsically dynamic.

A front panel control “Prefer Short Slews” is provided
so that the scheduler user can toggle between ß3=0 and the
standard ß3 value. The control is ignored if the scheduler’s
efficiency mode is set to Custom.

8.4 Retry Count

The scheduling rules state that a plan must either
complete successfully within a night, or fail completely. In

cases where a plan fails due to changes in sky condition,
weather shutdowns, or (rare) scheduling errors that cause an
observation’s specified time window to be missed, the
scheduler re-queues the plan, making it eligible to be started
again. This could be in the same night (if constraints can
still be met) or it may cause it to be delayed until a
succeeding night.

In order to provide some level of preference to failed
and re-queued plans, the scheduler keeps a count of the
number of times a plan has been re-queued due to failure.
This retry counter is used to provide a boost in preference in
the Efficiency function. This term is represented simply as

()3)(4 ≤= RRnE

where R is the retry count (= 0 if the plan is being started for
the first time). Furthermore, R is limited to 3, preventing a
repeatedly failing plan from being unfairly weighted.

The intention is to have the ß4 -weighting coefficient set
to a low value, providing only a mild boost in priority for
re-tried plans. Setting this to a high value could cause a
failed plan to become stuck in a failure loop. Further study
is planned to look for instabilities that might be caused by
this term in the Efficiency function.

A front panel control “Prefer Failed plans” is provided
so that the scheduler user can toggle between ß4=0 and the
standard ß4 value. The control is ignored if the scheduler’s
efficiency mode is set to Custom.

8.5 Meridian Crossing

When the telescope is on a German equatorial mount, a
high cost is associated with every crossing of the celestial
meridian. The mount must “flip”, which can take
considerable time. Besides the actual flip time, additional
time may be needed to assure precise pointing to the sky
after the flip due to non-orthogonality between the right
ascension and declination mechanical axes.

Thus, meridian crossings have a significant impact on
efficiency. The scheduler includes a meridian crossing
“penalty” term in the Efficiency function, as

MnE −=1)(5

where M is 1 if a meridian crossing is required to reach the
observation’s target coordinates, and 0 if no meridian
crossing is required.

For non-German mounts, the ß5 weighting coefficient is
set to 0, effectively eliminating this term from the
Efficiency function.

A front panel control “Avoid GEM Flip” is provided so
that the scheduler user can toggle between ß5=0 and the
standard ß5 value. The control is ignored if the scheduler’s
efficiency mode is set to Custom.

8.6 Lateness

Early in the development and testing of the scheduler, it
became apparent that, with a moderate to full load, targets
which are setting in the west during the evening might be

left behind as the scheduler concentrates around the
meridian. Since a given target sets even earlier on
subsequent nights, the problem worsens until the target
becomes completely unreachable for many months.

The Rising Plan Delay algorithm can help this
somewhat as previously described. Nonetheless, it was
determined that a “lateness” term was needed for
applications where westernmost targets are more important
then those at the meridian. The scheduler has a mode
selector that allows the user to select “Prefer Meridian”
versus “Prefer West”. The selector enables either the Transit
Altitude or Lateness terms, respectively. The two terms are
never used together in the standard modes of scheduler
operation.

Ideally, when calculating a lateness term, the time
remaining before the (currently eligible) plan again becomes
ineligible for any reason should be used. Thus

() ()()
() () 00

6/1

66

6

=<
Δ−=

nEnEfor
ntnE rem

where Δtrem(n) is the time (hours) until the candidate plan
would become ineligible due to falling out of constraints or
falling below the observing horizon.

8.7 Highest Altitude

Field experience and simulation revealed a limitation in the
Transit Altitude term. Some rising targets will never reach
their transit altitude before dawn. This led to an
experimental alternative to the Transit Altitude term.

This new term uses the highest altitude reached by a
rising plan’s centroid during the current observing night.
For targets which have already transited at dusk, the transit
altitude is still used, avoiding interaction with the Lateness
term described in section 8.6. For targets that do reach
transit altitude during the night, its effect is identical to
Transit Altitude. However for eastern targets which rise late
and don’t transit, the Highest Altitude term will give the
same boost level for those targets’ highest altitude as does
Transit Altitude for setting targets and targets that do transit
during the night.

The term is calculated using the candidate plan’s
centroid, as in Transit Altitude, but instead, for rising targets
only, using the highest altitude reached by the target before
dawn. Thus

 ()
)(
)(

7 n
nnE

H

C

A
A

= (rising)

 ()
)(
)(

7 n
nnE

T

C

A
A

= (other)

Where AH(n) is the highest altitude reached by the nth
plan’s centroid before dawn, for a rising target, and AT(n) is
the transit altitude as before. If E7 is set to a non-zero value,
then E1 must be set to zero, and vice versa.

The effect of this term is still under investigation. Early
results are encouraging, and if eastern targets’ efficiency is

improved without significant effect on transiting targets, it
will be adopted in place of Transit Altitude. At present, the
scheduler supports both terms, and E7 may be activated in
place of E1 by adjusting the weights in custom efficiency
mode.

8.8 Observing Conditions

One of the scheduler’s standard constraints is sky condition.
Application of this constraint prevents a plan from getting
started if sky conditions are poorer than required. However,
if sky conditions are better than required, efficiency dictates
that the better conditions should not be wasted. If there is a
lower priority plan whose first observation requires the
better conditions, it should perhaps be run in preference.

The simplest scheme would be to require that
observations be made only at their required conditions. This
is not efficient, though, as it would prevent usage in better
conditions than needed even when there is nothing else to
do. Instead, we use a term suggested by Steele and Carter.

In the scheduler, sky condition can be one of four
values, excellent, good, fair and poor. We assign numeric
values of 3, 2, 1, and 0 to these conditions, respectively.
Then we calculate the E term as

1)(
1)(6 +−

=
AR CC

nE

where CR is the required condition number and CA is the
actual condition number.

8.9 Standard Efficiency Modes

It should be clear that end users will be bewildered by the
effects of adjusting efficiency weights and the resulting
changes in behavior of the scheduler. Therefore, the
scheduler was designed with user controls allowing two
standard modes of operation, plus a third mode in which the
efficiency weights are user-adjustable:

1. Prefer Meridian
2. Prefer West
3. Custom

In addition, as previously described, the Priority, Slew
Distance, Meridian Crossing, and Retry Count terms may be
enabled or disabled via user controls. When enabled, and
when the scheduler is running in mode (1) or (2) above,
standard weights are used. When disabled, the
corresponding weight is set to zero, eliminating the term
from the efficiency calculation. To summarize, these
additional user controls are:

1. Prefer Short Slews (slewing overhead)
2. Avoid GEM Flip (meridian crossing)
3. Prefer Failed plans (retry count)
4. Ignore Priority (priority)

Note that the Ignore Priority control is provided for
engineering purposes; ordinarily the user would never
suppress the effect of scientific priority. Table 3 shows the
efficiency weights for the two standard scheduling modes:

Table 3. Standard Efficiency Weights

Term Prefer Meridian Prefer West
Priority 1.0 1.0
Transit Altitude 0.7 0.0
Slewing Overhead 0.4 0.4
Retry Count 0.5 0.5
Meridian Crossing 0.5 0.5
Lateness 0.0 0.7
Highest Altitude* 0.0 0.0
Observing Conditions 0.4 0.4

* Experimental, available only in Custom mode.

9 TOE Interrupt Facility

Another issue that appeared during usage of the first version
of the scheduler was the need for some sort of “target of
opportunity” (TOE) interrupt. The dispatch scheduler is
well-suited to this requirement. The obvious use case is
Gamma Ray Burster (GRB) follow up. The transient nature
of GRBs is such that follow up observations must begin
within a few minutes of a detection by one of the satellites
such as Swift7.

Images being acquired during scheduler operation may
span many minutes. Thus, it was determined that the
scheduler must have a way to immediately halt data
acquisition by the sequencer and optionally stop any
running plans (those which have uncompleted linked
observations). The latter is needed in order to make way for
newly added urgent observing requests for GRB follow up.
The fact that the scheduler can accept new observing
requests while running makes this sort of thing possible.

To make this facility most general, it was decided to
provide an externally accessible application programming
interface (API) for monitoring tools. This API not only
provides the interrupt signaling capability, but also a set of
functions that monitoring tools can use to determine the
observability of a potential TOE. Uses of this facility will be
the subject of a future paper.

10 Simulation Design Issues

The initial development of the scheduler used simulations
throughout. In the early design phase, narrow-focus
simulations were used to evaluate various candidate terms in
the Efficiency function. These simulations are beyond the
scope of this paper. They served primarily to assist in the
selection of terms in the Efficiency function.

Once the framework was integrated into a working
scheduler, a second phase of simulations was undertaken to

7 See http://swift.gsfc.nasa.gov/docs/swift/swiftsc.html

investigate its behavior, look for anomalies, and get some
feel for its performance under various conditions. In
particular, the effects on behavior due to variations in the ßi
weighting coefficients were studied.

After the initial release of the scheduler to commercial
users, their feedback was used to drive further refinement of
the design and implementation. This ongoing user-driven
dev elopement yielded, among many other things, the
Rising Plan Delay algorithm described in Section 7. It
should be noted that, in contrast to most other observatory
schedulers, the present scheduler was designed to withstand
the rigors of widespread usage by non-technical
astronomer/users and the wide variations in requirements of
these users.

The revision to this paper occurred simultaneous with a
review of the scheduler, following 2 years of deployment in
the field at over a dozen sites. Part of this review included a
new round of simulations following design changes. The
primary purpose of these simulations was to support
regression testing (assurance that changes did not impair
performance and/or reliability). It was found that the design
changes during the review were in fact improvements in
most cases, and that there were no regressions.

These simulations will be described along with a few
illustrative results.

Table 4. Load Generator Mission Types

Mission type Fraction
of total
load*

Description

Random single
image

0.6 Single exposure,
random interval 240
sec mean, 60 sec.
std. dev. Random
priority mean of 5,
std. dev. of 2.

LRGB
Astrophotography

0.2 4 exposures, base
(L) exposure of 300
sec. Scientific
priority of 3.

Asteroid/Comet
search and follow-
up

0.2 4 observations, each
image 180 sec.
integration, spaced
45 min apart with a
+/- 10 min
tolerance. Scientific
priority of 5.

* with all workload types turned on.

10.1 Input to Simulations

In order to provide real-world conditions for
simulations, a built-in facility is provided for generating a
Project consisting of multiple plans of various kinds. The
generator is capable of creating plans that are representative
of the astronomy missions shown in Table 4. When
generating a test workload, it is possible to selectively
include or exclude each of these mission types.

The fraction of the total workload represented by each
mission type is variable. In Table 4, the “fraction of total
load” values given are those that result if all of the mission
types are selected. If one or more mission types are
disabled, the relative mix changes based on the relative
frequency of the remaining mission types. Some simulations
used a sub-set of the remaining plan types, and this will be
clearly indicated in the description of the simulation.

Target/observation locations are generated randomly
above 35 degrees elevation over the “dark sky” for the
entire night on the date and geodetic location set in the
scheduler. For plans with linked observations of different
targets, it is possible for targets to be unreachable due to the
timing. This is a real world.

Finally, the workload for the night can be set to one of
the following levels:

1. Lightly booked (20% of the night)
2. Fully booked (70% of the night)
3. Over-booked (150% of the night)

The percentages refer to the amount of time that all of the
scheduled observations are estimated to require, not just
shutter-open time. The overhead times are taken into
consideration.

10.2 Simulated Sequencer

In order to create as realistic an environment as possible, a
simulated sequencer was built and attached to the
scheduler’s’ sequencer interface. The simulated sequencer
looks at the dispatched observation and its image-sets, and
simply creates a time delay equal to that which a real
observatory would require to complete the observation. The
following common process items are given separate time
estimates. The actual values of the timing parameters are
shown in Table 5 below.

1. Slewing time (based on rates and settling time, runs
start with telescope at parked position 0 HA, 0 Dec)

2. Guider startup time (for “long” images only)
3. Filter switching time (assumes focus offsets

supported)
4. Imager download time (varies by binning)
5. Post processing time (plate solving, calibration,

stacking)

The sequencer simulator can be configured to add a
random variation to the timing values. This is used to test
the robustness of the dispatcher in the face of inaccurate
time estimates. In addition, the sequencer simulator can be
configured to fail observations randomly. Failure of any of
the images in an observation will cause the observation (and
the plan) to fail, so the more images are in a plan, the more
likely it is to fail, all else being equal.

Table 5. Sequencer Simulator Timings

Slew rate 3.5 degrees/second
Slew settling 10 seconds
Guider startup 30 seconds
Minimum unguided
exposure interval

120 seconds

Imager download 20 seconds
Filter switching 20 seconds
German flip 90 seconds
Auto-focus 60 seconds
Image post-processing 5 seconds
Timing Noise (uniform
distribution)

5% of interval*

* Disabled for some simulations.

10.3 Time Simulation

It is clearly required that simulated time be accelerated
for scheduler simulations. Since scheduling itself is a CPU
and disk/database bound activity, it is not clear how to treat
scheduling time as part of the overall observatory efficiency.
The solution is to accelerate the clock only during the time
the sequencer simulates acquiring the data for the
dispatched observation and image-sets and when the
scheduler is sleeping (no work to do). The clock runs at real
time during the scheduling phase. This most accurately
reflects the effect of scheduling time on overall efficiency.
All sources of time, including time stamps in the log file,
come from the 2-mode clock.

11 Simulations and Results

This section presents the results of some of the simulations,
showing the effects of varying the ßi -weighting coefficients
on timing and hour angle at acquisition. Two data sets were
generated: one consisting of random targets of one exposure
each, with random exposure intervals and random priorities,
and the other consisting of a mixture of the random targets
and sets of random targets of four time-spaced linked
observations of each with fixed exposure intervals and
priorities. See Table 4 for specifics.

The number of targets was chosen for a moderate
(70%) load and an overloaded (150%) level. The test loads
were generated by using the timing information in Table 5, a
latitude of 33N, longitude of 111W, a starting time at
astronomical twilight on March 25, 2006 (UTC), and
generating random targets computing the total time needed
to acquire each image of that target, and adding that to a
running total. Since slewing time is not known (it is order-
dependent) a guess of 45 degrees is used. When the running
total reached 70% of the total night-time from astronomical
twilight to astronomical twilight, generation was stopped.
For example, since the random targets also had randomly
varying exposure intervals, sometimes the guider would be
needed (incurring additional guider startup time).

Each of these target sets were simulated over a night
three times, with each of just three of the terms in the

Efficiency equation set for ßI = 1.0 and the rest set to 0.0
(disabling them). The three terms studied were Priority,
Transit Altitude, and Slew Time.

11.1 Random Single Images – Moderate (70%) Load

The first set of simulations uses a Project consisting of 69
plans, 1 observation and 1 image-set in each with no
constraints apart from being above the observing horizon of
25 degrees. Figure 4 shows the distribution of targets in
equatorial coordinates.

Coverage Chart for RunDetail.txt (69 targets)

-20

-10

0

10

20

30

40

50

60

70

80

D
ec

Figure 4. Targets for single image moderate load test

Priorities are random with normal distribution, mean of 5.0,
and standard deviation of 2.0. Exposure intervals are
random with normal distribution, 240 second mean,
standard deviation of 60 seconds.

11.1.1 Priority Only (moderate load)
The first simulation with the random-images data set was
run with only the Priority term in the Efficiency equation.
This caused the dispatcher to always pick the eligible plan
that has the highest scientific priority. Figure 5 below shows
the resulting distribution of acquisition locations relative to
the meridian.

Coverage Chart for RunDetail.txt (66 targets)

-20

-10

0

10

20

30

40

50

60

70

80

D
ec

Observed
Skipped
Never Eligible

Figure 5. Target sequence for 100% priority (moderate)

For this test, 66 of the 69 available plans were completed.
Analysis of the log file of the run confirmed that the plans
that were not run were those with the lowest scientific

priority. Because, in this scenario, the targets were picked
without regard to position and slewing time, the excessive
motion (clearly visible in Figure 5 and Figure 6) adversely
affected the efficiency of the dispatcher.

Meridian (HA*Cos(Dec)) for RunDetail.txt (66 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
os

(D
ec

)

Figure 6. Meridian chart for 100% priority (moderate)

11.1.2 Transit Altitude Only (moderate load)
Next, the same random-images data set was re-run, this time
with only the Transit Altitude term in the Efficiency
equation. This caused the dispatcher to always pick the
eligible target that is closest to its transit altitude. The
results of this test are shown in Figure 7 and Figure 8 below.
Predictably, most motion was in declination and the
deviation from the meridian was far less. As the scheduler
ran out of plans to choose from, it started picking the
remaining targets which were all to the east of the meridian,
so the trend is to the east (positive hour angle).

In this case, 65 of the 69 available plans were
completed. Analysis of the log file revealed that those that
were missed were early evening targets (lowest right
ascension) whose meridian passage had already occurred.
At the beginning of the night, there are plenty of targets
approaching their meridian passage, and these are of course
given preference in this scenario (transit-altitude-only). By
the time the dispatcher got low on eligible targets, those
early targets had dropped below the 25-degree altitude limit
in the west.

Coverage Chart for RunDetail.txt (65 targets)

-20

-10

0

10

20

30

40

50

60

70

80

D
ec

Observed
Skipped
Never Eligible

Figure 7. Target sequence for 100% transit alt. (moderate)

Meridian (HA*Cos(Dec)) for RunDetail.txt (65 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
os

(D
ec

)

Figure 8. Meridian chart for 100% transit alt. (moderate)

11.1.3 Lateness Only
Next, the effect of the (revised) Lateness term was
investigated at moderate load. This resulted in the dispatcher
trying to choose the most westward targets, as shown in
Figure 9 and Figure 10 below. Again, however, when the
dispatcher ran out of targets, it started picking the ones to
the east as they rose and came into constraints. In this test,
all 69 possible plans were successfully completed, since the
dispatcher started with those that were about to set, rather
than starting near the meridian while some westward targets
set and became inaccessible, as in the previous test.

Figure 9. Target sequence for 100% Lateness (moderate)

Meridian (HA*Cos(Dec)) for RunDetail.txt (69 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
os

(D
ec

)

Figure 10. Meridian chart for 100% Lateness (moderate)

11.1.4 Slewing Distance Only (moderate load)
The random-images data set was run again with only the
Slew-Overhead term in the Efficiency function. This caused
the dispatcher to always pick the plan whose target is closest
to the previous one. The results of this test are shown in
Figure 11 and Figure 12 below. Minimizing slew time
allowed the all 69 plans to complete, and as both charts
show, the dispatcher usually selects the closest target from
the previous one, wandering across the sky to achieve this
goal. Slewing distances become large towards the end of the
run as it does the final few targets.

Coverage Chart for RunDetail.txt (69 targets)

-20

-10

0

10

20

30

40

50

60

70

80

D
ec

Observed
Skipped
Never Eligible

Figure 11. Target sequence for 100% slew dist. (moderate)

Meridian (HA*Cos(Dec)) for RunDetail.txt (69 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
os

(D
ec

)

Figure 12. Meridian chart for 100% slew dist. (moderate)

11.2 Random Single Images – Overload (200%)

The effects of the priority and slewing distance terms in the
Efficiency function do not change with loading. Therefore
the over-loaded tests are presented only for the second and
third cases above (Transit Altitude and Lateness only).

In this series, the number of requested targets was
increased to 200% of the estimated maximum targets that
could be acquired (again given the same observing overhead
times as well as imaging times as in the previous tests). This
resulted in 188 total target requests. The individual targets
were generated using the same random priorities and
exposure intervals as already described (though priority was
ignored in these tests for clarity, as already explained).

11.2.1 Transit Altitude Only (over-loaded)
The target sequence chart in Figure 13 shows the sky
distribution of the targets used in the 200% over-loaded
tests, as well as the targets actually acquired when using
only the transit altitude term in the Efficiency function. As
expected, both early and late targets were skipped, in
preference for those that happened to be nearest to the
meridian at each dispatch cycle. This resulted in targets that
were neither early nor late also being skipped, simply
because there were too many to acquire.

The meridian chart in Figure 14 clearly shows the effect
of the transit altitude term of the Efficiency function when
the scheduler has more work requested than it can do. At all
times there are many plans eligible, thus the Efficiency
function directs the scheduler to choose the plan nearest to
the meridian as its next best. Only 93 plans were
successfully completed, however.

Coverage Chart for RunDetail.txt (93 targets)

-20

0

20

40

60

80

D
ec

Observed
Skipped
Never Eligible

Figure 13. Target sequence for 100% transit alt. (overload)

Meridian (HA*Cos(Dec)) for RunDetail.txt (93 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
os

(D
ec

)

Figure 14. Meridian chart for 100% transit alt. (overload)

11.2.2 Lateness Only (over-loaded)
With only the Lateness term in the Efficiency function, the
target sequence chart in Figure 15 shows a total preference
for the earliest targets. In this case, more plans were run
(106 versus 93), presumably because no early targets are
lost, and the telescope stays to the west as much as possible.

Coverage Chart for RunDetail.txt (106 targets)

-20

0

20

40

60

80

D
ec

Observed
Skipped
Never Eligible

Figure 15. Target sequence for 100% lateness (overloaded)

Meridian (HA*Cos(Dec)) for RunDetail.txt (106 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
os

(D
ec

)

Figure 16. Meridian chart for 100% Lateness (overloaded)

11.3 Effect of Rising Plan Delay

Next, the effects of Rising Plan Delay were investigated at
both moderate load (where its effects should be beneficial)
and over-load (to see if it has detrimental effects). Priority
and Slew Distance terms were disabled for clarity. The same
sets of observing requests for moderate and overload cases
were used.

11.3.1 Transit Alt. and Rising Plan Delay (moderate)
At a moderate load, the beneficial effects of Rising Plan
Delay are clear when comparing Figure 18 with Figure 8
(same case but without Rising Plan Delay). All 69 possible
plans were acquired. Most were acquired very close to the
meridian, well above their constraints. Only early and late
targets were (necessarily) acquired away from the meridian.

Coverage Chart for RunDetail.txt (69 targets)

-20

-10

0

10

20

30

40

50

60

70

80

D
ec

Observed
Skipped
Never Eligible

Figure 17. Target sequence for 100% Transit Altitude

with Rising Plan Delay (moderate)

Meridian (HA*Cos(Dec)) for RunDetail.txt (69 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
os

(D
ec

)

Figure 18. Meridian chart for 100% Transit Altitude

with Rising Plan Delay (Moderate)

11.3.2 Lateness and Rising Plan Delay (moderate)
With Rising Plan Delay in effect, switching from 100%
Transit Altitude to 100% Lateness caused very little change
in the behavior of the dispatcher under moderate load.
Again, all plans were completed. The only differences
appeared at the beginning and end of the run, where the
early targets were acquired earlier (and in a more favorable
position) and some late targets were acquired in less
favorable positions.

Coverage Chart for RunDetail.txt (69 targets)

-20

-10

0

10

20

30

40

50

60

70

80

D
ec

Observed
Skipped
Never Eligible

Figure 19. Target sequence for 100% Lateness

with Rising Plan Delay (moderate)

Meridian (HA*Cos(Dec)) for RunDetail.txt (69 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
os

(D
ec

)

Figure 20. Meridian chart for 100% Lateness

with Rising Plan Delay (moderate)

11.3.3 Transit Alt. and Rising Plan Delay (over-loaded)
Comparing Figure 22 with Figure 14 shows that the primary
effect of Rising Plan Delay on an over-loaded schedule with
Transit Altitude only is to allow more plans to be completed
(109 versus 93), a benefit. Figure 22 shows a few deviations
from the meridian through the run, but overall there seems
to be no detrimental effect.

Coverage Chart for RunDetail.txt (109 targets)

-20

0

20

40

60

80

D
ec

Observed
Skipped
Never Eligible

Figure 21. Target sequence for 100% Transit Altitude

with Rising Plan Delay (over-loaded)

Meridian (HA*Cos(Dec)) for RunDetail.txt (109 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
os

(D
ec

)

Figure 22. . Meridian chart for 100% Transit Altitude

with Rising Plan Delay (over-loaded)

11.3.4 Lateness and Rising Plan Delay (over-loaded)
Comparing Figure 24 with Figure 16 shows that the effect
of Rising Plan Delay on an over-loaded schedule with
Lateness only is minimal. Again, more targets are acquired
(though only a few, 108 versus 105), and there seem to be
no detrimental effects. Figure 24 shows virtually the same
target positions as Figure 16.

Coverage Chart for RunDetail.txt (108 targets)

-20

0

20

40

60

80

D
ec

Observed
Skipped
Never Eligible

Figure 23. Target sequence for 100% Lateness

with Rising Plan Delay (over-loaded)

Meridian (HA*Cos(Dec)) for RunDetail.txt (108 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
os

(D
ec

)

Figure 24. Meridian chart for 100% Lateness

with Rising Plan Delay (over-loaded)

11.4 Combined Single and Quadruplets

The final set of simulations to be presented consists of
combinations of plans containing random single images and
plans each containing four linked observations (one 180-
second image of each) of the same target (a simulated
asteroid follow up). The linked observations were spaced 45
min apart with a 10 min. The dispatcher was configured to
enable Rising Plan Delay and use only the Transit Altitude
term in the Efficiency function. As before, other Efficiency
terms such as priority were ignored for clarity. Again, the
goal was to assure that Rising Plan Delay does not adversely
impact the operation of the scheduler.

11.4.1 Combined Plans (moderately loaded)
The moderate load combined test consisted of 42 plans total,
with 21 being random single images as previously described
and 14 being simulated asteroid follow up plans with 4
linked observations as just described. Figure 26 shows that
Rising Plan Delay is effective in preventing eastward drift
of observing position as before. Of course there are
deviations away from the meridian for the plans with linked
observations. It is worth noting that, apart from early
evening plans, the distribution of observing position about

the meridian is roughly symmetrical. This was not the case
before the introduction of Rising Plan Delay.

Coverage Chart for RunDetail.txt (79 targets)

-10

0

10

20

30

40

50

60

70

80

D
ec

Observed
Skipped
Never Eligible

Figure 25. Target sequence for combined plans (moderate)

Meridian (HA*Cos(Dec)) for RunDetail.txt (79 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
os

(D
ec

)

Figure 26. Meridian chart for combined plans (moderate)

12 Conclusions

The simulations results show that a dispatch scheduler is a
practical (and in some ways, superior) alternative to queue-
based optimizing schedulers. It has the following
advantages:

1. Responds to changes in observing conditions and
dispatches requests that can be done in the current (or
worse) conditions while trying to do the ones that must
be done in the current (or better) conditions.

2. May be interrupted by bad weather, and will resume by
dispatching the best observations instead of merely
delaying uncompleted ones (which will be west of their
originally planned places).

3. Accepts new observing requests during the run and
makes them immediately available.

4. Allows modification of unstarted requests at any time.
5. Will retry failed observations automatically.

It should be noted, however, that a dispatch scheduler is not
applicable in all situations. At one end of the spectrum is a
plan with many short exposures, such as used by a

supernova search program. In this case, observing efficiency
is paramount. The additional dispatch time between (very
short) plans, and the randomness of the traversal sequence
between targets, may significantly impact the total number
of images that can be acquired in a run. For example, 3
additional seconds of dispatch time over 600 images reduces
observing time by a half hour. At the other end of the
spectrum is the astro-photography application in which a
single target is imaged for long periods of time, up to the
entire night. In this case, dynamic scheduling is probably
unnecessary.

12.1 Rising Plan Delay

The behavior of the revised dispatcher with Rising Plan
Delay conditions exceeded expectations. It seems clear from
the evidence presented that Rising Plan Delay solves the
“eastward drift” problem by improving the observing
positions for light and moderate schedule booking levels,
while having no adverse effects on scheduler behavior under
over-booked conditions. More tests are needed, however, to
validate “edge conditions” and to check for stability
problems when recycling plans that have failed. For now,
plans are not automatically recycled.

13 Revision Status

This May 2006 paper is a revision to the paper of the
same title originally submitted for review and publication to
the Society for Astronomical Sciences on March 30, 2004.

14 Acknowledgements:

My heartfelt thanks go to Dr. Frederick Hessman of the
University of Göttingen, Germany. Once he understood that
I was looking at dispatch scheduling, he pointed me to the
Steele and Carter paper [1]. In addition, he suggested the
open-ended constraint design, including the idea of plug-in
modules for constraints. This turned out to be an excellent
suggestion.

In addition, John Farrell, formerly of Los Alamos
National Laboratory and currently a director of the Las
Cumbres Observatories, provided countless hours of testing
simulations, and analysis. His analysis provided the impetus
for the addition of the “lateness” term in the efficiency
function, as well as providing insight for setting the standard
efficiency weights. More recently, he indicated the strong
need for a change which resulted in the rising plan delay
algorithm, as well as the “highest altitude” alternative to
transit altitude in the efficiency function. My thanks go to
him as well.

Finally, many of the changes and additions to the
scheduler in its new version are due to the feedback of the
scheduler users. In particular, the team of observers using
the Sonoita Research Observatory (Walt Cooney, John
Gross, Arne Henden, Dirk Terrell), as well as Steve Brady
(a prolific CV observer), were the source of excellent

feedback and suggestions. I truly appreciate their patience
and enthusiasm.

References:

1. Steele I.A., Carter, D., 1997, Control Software and
Scheduling of the Liverpool Robotic Telescope in
Telescope Control Systems II, Proc. SPIE, 3112, ed., H.
Lewis, 222.

2. Puxley P., Boroson T., 1997, Observing with a 21st
Century Ground-Based Telescope in Optical
Telescopes of Today and Tomorrow, Proc. SPIE, 2871,
ed. Arne L. Ardeberg, 744

1Contact Information
Robert B. Denny
DC-3 Dreams, SP
6665 E. Vanguard St.
Mesa, AZ 85215-7737 USA
+1 480 396 9700
rdenny@dc3.com

	1 Introduction
	2 Background
	2.1 Scheduler Design
	2.2 System Architecture

	3 Scheduler Operation - Overview
	3.1 Efficiency Function
	3.2 Concurrent plan Execution

	4 Scheduling Cycle
	5 Scheduling Rules
	5.1 Best-Efforts Plans

	6 Application of Constraints
	6.1 Strict versus Lenient Application
	6.2 Custom Constraints

	7 Rising Plan Delay
	8 Efficiency Function
	8.1 Scientific Priority
	8.2 Nearness to Transit Altitude
	8.3 Slewing Overhead
	8.4 Retry Count
	8.5 Meridian Crossing
	8.6 Lateness
	8.7 Highest Altitude
	8.8 Observing Conditions
	8.9 Standard Efficiency Modes

	9 TOE Interrupt Facility
	10 Simulation Design Issues
	10.1 Input to Simulations
	10.2 Simulated Sequencer
	10.3 Time Simulation

	11 Simulations and Results
	11.1 Random Single Images – Moderate (70%) Load
	11.1.1 Priority Only (moderate load)
	11.1.2 Transit Altitude Only (moderate load)
	11.1.3 Lateness Only
	11.1.4 Slewing Distance Only (moderate load)

	11.2 Random Single Images – Overload (200%)
	11.2.1 Transit Altitude Only (over-loaded)
	11.2.2 Lateness Only (over-loaded)

	11.3 Effect of Rising Plan Delay
	11.3.1 Transit Alt. and Rising Plan Delay (moderate)
	11.3.2 Lateness and Rising Plan Delay (moderate)
	11.3.3 Transit Alt. and Rising Plan Delay (over-loaded)
	11.3.4 Lateness and Rising Plan Delay (over-loaded)

	11.4 Combined Single and Quadruplets
	11.4.1 Combined Plans (moderately loaded)

	12 Conclusions
	12.1 Rising Plan Delay

	13 Revision Status
	14 Acknowledgements:

