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Abstract: Automated telescope scheduling systems have traditionally focused on optimizing the use of the 
observatory, minimizing overhead and maximizing shutter-open time. However, most observatories do not enjoy 
consistently good skies. Conditions can change significantly during an observing session, leading to schedule breakage. 
In addition, science observing may require prompt follow-up observations that arise during a night’s observing. These 
issues give rise to the need for a scheduling system that is capable of recovering from periods of bad skies, wind, etc., 
and of integrating newly added observations during operation, all without operator intervention. The concept of “just-
in-time” or dispatch scheduling, where the scheduler dynamically makes a “best” choice for the next observation, will 
be discussed. A dispatch scheduler was constructed, tested initially (as described in the previous version of this paper), 
deployed and supported as a commercial product then revised per user feedback and ongoing research. This experience 
exposed a weakness in the design. A solution was found and validated. The solution also improved the overall 
efficiency of the scheduler. This paper will describe the revised scheduler, the specific weakness encountered, and the 
solution to this weakness, Rising Plan Delay.  
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1 Introduction 

The process of acquiring data for both astronomical science 
and artistic astroimaging involves planning, scheduling, and 
observing. These three phases of data acquisition may be 
viewed as what, when, and how, respectively. Managing 
acquired data (where) is a separate topic that will not be 
addressed in this paper. When designing tools for data 
acquisition, it is important to keep the three considered 
activities clearly separated.  

1. Planning establishes what data is needed for the 
mission, and may place constraints that affect 
acquisition timing in order to assure that the data meets 
the minimum quality needed to support the mission. 
Typically, planning is done by the investigator or 
astronomer. 

2. Scheduling makes the decision as to when requested 
data can and should be acquired, in order to meet the 
constraints. This is the role of a scheduler. 

3. Observing involves the control of the observatory 
instruments and software to capture a package of data 
(which may be multiple images at multiple 
wavelengths, for example). The use of a scheduler 
implies that a sequencer is used to automate the data 
acquisition process when directed by the scheduler. 

This paper, and the engineering work it describes, focuses 
only on scheduling. The implications of this may not be 
immediately obvious. Suppose a request is submitted for an 
observation with coordinates and constraints that make it 
impossible to observe at any time during the year regardless 
of weather. It is not the scheduler’s job to alert the user that 

he has entered an impossible request. It simply will never 
schedule the impossible request. It is the job of the 
astronomer (and any planning tool) to create an observing 
plan that is practical as well as supportive of the mission. 
One can envision multiple specialized planning tools that 
feed their requests into the scheduler through a common 
protocol. As stated, these tools are not a topic of this paper. 

2 Background 

During the initial phase of this project, it was found that 
virtually all of the research on scheduling of resources had 
optimal resource utilization as the goal. This typically 
involves a complex time-consuming process, and applied to 
astronomical observing, produces a static schedule for an 
entire night’s observing. The success of such an optimized 
static schedule depends on (a) problem-free execution of 
each observation, (b) perfect knowledge of the time duration 
needed for each observation, and (c) perfect fore-knowledge 
of the weather throughout the night.  

Once an observation fails, any linked observations also 
must fail, leaving holes in the schedule. If the telescope 
needs an un-forecast refocusing, the schedule is broken, 
requiring observations (and possibly linked observations) to 
be skipped. If the sky conditions or weather changes, it can 
eliminate an entire class of observations from consideration 
due to their constraints being violated. For example, a thin 
cirrus layer could preclude all-sky photometry, but there 
could be other as-yet unscheduled observations that could 
be made without deleterious effect. 

These considerations led to the desire to make the 
scheduler dynamic in some way, able to adapt to changing 



conditions, new requests, and acquisition errors, while still 
maintaining reasonable efficiency. Further research in this 
direction produced the Steele and Carter paper (ref. 1). The 
concepts discussed in their paper provided basic concepts 
for the design of the present scheduler. However, very little 
detail is contained in Steele and Carter, and the difficult 
problem of handling linked observations is not treated at all. 
The basic concepts presented in their paper will be briefly 
described in the following sections. No claim of originality 
is made for these concepts. 

2.1 Scheduler Design 

Steele and Carter identify the following three criteria for a 
“good schedule”: (a) fairness, (b) efficiency, and (c) 
sensibility. A fair schedule balances time allocations 
between users such that they all share good and bad 
observing times equitably. An efficient schedule is one that 
maximizes instrument utilization and strives to match 
observations with required conditions. A sensible schedule 
is one that attempts only those observations that are possible 
under the current observing conditions.  

The ACP Scheduler (ACPS) is a practical adaptation 
of Steele and Carter’s concepts combined with additional 
features and practicalities needed to turn their basic ideas 
into a commercial-class scheduling engine. It is designed to 
handle observation requests from multiple users. Requests 
are kept in a permanent relational database store. The 
requests can be entered months ahead of the time at which 
constraints will first be met, or minutes before they are 
needed.  

Throughout this paper, many of the fine-grained details 
and features of the scheduler are omitted for clarity. They 
don’t affect the basic conceptual knowledge gained from 
user experiences and simulations. 

Table 1. Scheduler Data Hierarchy 

User Top-level node. Represents a user or using 
organization, not necessarily an observer or 
investigator 

Project Child of User. Represents a scientific 
project that may require multiple sets of 
data 

Plan Child of Project. This is the basic 
schedulable unit. It represents one or more 
observations that must be performed as a 
group and within a single night. 

Observation Child of plan. Represents a single target 
beginning at a single time. This is the 
basic unit of work for the observatory. 
Constraints are applied to observations. 
Linked observations are entered as separate 
observations with the same parent plan, 
with specified time separations. 

ImageSet Child of Observation. Represents one or 
more images to be acquired back-to-back 
and at a single wavelength. 

In order to understand the descriptions of scheduler 
behavior in later sections, it is necessary to define some 
terminology. The scheduler request database is hierarchical 

and consists of the following node types, as shown in Table 
1 above. 

The simplest plan is one with a single observation and a 
single image-set that specifies a single image. Plans with 
more than one observation form linked observations with a 
specified time interval between them. 

Each observation carries with it a set of constraints that 
limit the times at which the observation can be taken. 
Example constraints include altitude, air mass, seeing, moon 
phase/elongation, and sky condition. The scheduler supports 
an open-ended set of constraints through a plug-in facility. 
For this paper, only a basic “above the horizon” altitude 
constraint was used in simulations. A more complex set of 
constraints would serve only to make it more difficult to 
interpret results.  

Priorities are supported, and are applied to plans. Rather 
than impose a fixed priority range on everyone, each User is 
allowed to assign any range of priority values to their plans. 
During the scheduling cycle, (see below) priorities are 
normalized in a way that maximizes fairness between Users. 

2.2 System Architecture 

Figure 1 is a software block diagram of a robotic 
observatory controlled by the scheduler and a sequencer, 
augmented by user tools for browsing the request database 
and for planning observing requests.   

The sequencer is responsible for automatically 
manipulating all of the observatory instruments and 
equipment needed to acquire the data for each observation 
(the basic unit of work for the observatory). The scheduler 
was designed with a standard sequencer interface, allowing 
it to potentially be used with a variety of robotic observatory 
control systems. Two sequencers have been developed at 
this point: (1) a simulator sequencer for research and testing, 
and (2) a commercial observatory control system1. 
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Figure 1. Software Block Diagram 

                                                           
1 ACP Observatory Control Software, developed by the author. 



The scheduler consists of a dispatcher and a set of 
constraint plug-ins. As described elsewhere, constraints can 
be separately developed, allowing for addition of custom 
constraints for special applications. The dispatcher is 
responsible for selecting plans to start, and for dispatching 
observations to the active sequencer. 

The centerpiece of the system is a relational database 
which contains all of the observing requests and the current 
states of each. All of the components of the system 
communicate through the database via an operating system 
vendor supplied database engine plus a wrapper object that 
isolates the system components from low level database 
operations and Structured Query Language (SQL) 
statements. Thus, the database looks like a special purpose 
black box with all storage and retrieval details hidden from 
the system components. 

3 Scheduler Operation - Overview 

Fundamentally, ACPS is a dispatch scheduler. At each 
scheduling cycle, it decides which of the eligible plans to 
start next. Once started, a plan must run to completion or 
fail completely. If a plan fails, it is re-queued and will be 
attempted again later. It is possible (via a user control) to 
give preference to failed (and thus re-queued) plans with 
respect to those that have never been started.  

When an observation is completed, the scheduler looks 
to see if one or more new plans can be started (based on 
constraints) before an already-running plan’s next linked 
observation comes up for acquisition. At a minimum, the 
first observation of a candidate new plan must fit into the 
time remaining before any already-scheduled observation 
(belonging to any already-started plan). If a candidate new 
plan has multiple linked observations, all of them are 
checked against all of the linked observations in already-
started plans. If there are any clashes, the candidate plan 
will not be considered. There is no requirement that linked 
observations be spaced at regular intervals. 

3.1 Efficiency Function 

After all eligible plans are checked for constraints and 
timing clashes with running plans, the remaining eligible 
plans form the set from which the scheduler picks the “best” 
plan to start in this cycle. As described in detail below, this 
is done by applying an efficiency function to each plan. The 
plan with the highest efficiency index will be started. Of 
course, if only one plan remains after the preceding tests, it 
will be started without qualification.  

3.2 Concurrent plan Execution 

It is important to understand that multiple plans may be 
active at any point in time. This will happen if any plan with 
more than one linked observation is active. As we will see, 
one of the scheduler’s important tasks is to avoid starting a 
new plan if any of its observations would clash in time with 
any of the linked observations of running plans. 

Any point in time, the remainder of the night may 
already have time slots reserved for doing linked 
observations of running plans. These time slots are in 
general irregularly spaced in time and occupy irregular 
intervals of time as well. Thus, multiple plans may be 
concurrently active, and this is an important feature of the 
scheduler if it is to achieve its goal of efficiency. 

4 Scheduling Cycle 

The scheduler runs a continuous loop consisting of the 
following steps (simplified for clarity): 

1. Calculate estimated time spans of any newly added 
plans 

2. Normalize priorities. 
3. Start any plans which have specified an absolute start 

date/time, and for which that date/time has arrived. If 
such a plan is started, send its first observation to the 
Sequencer. Jump to (10). 

4. Look to see if any already-started plans have an 
observation that is due now. If so, send that observation 
to the sequencer. Jump to (10). 

5. Change unstarted plans that were previously vetoed and 
deferred by constraints, and for which the deferral time 
has expired, back to a status of pending (eligible to be 
started now). 

6. Change unstarted plans that were previously vetoed due 
to a time clash back to a status of pending. 

7. At this point, only eligible pending plans are left to 
consider. For each of them: 

A. Check to see if the entire plan can be completed 
before sunrise if it were to be started now. If not, 
defer the plan, removing it from consideration until 
the next night. 

B. Check each observation of the plan (if more than 
one observation, the second and subsequent will 
specify a time from the previous observation), 
using the current time as a baseline, as follows: 

1. Apply observer-specified constraints at the 
(estimated) time. If constraints cannot be met, 
veto the plan and move on to the next 
candidate. 

2. Test to see that the observation does not clash 
with any observation belonging to an already-
started plan. If a clash is detected, veto the 
plan and move on to the next. 

C. For a rising plan, check to see if it can safely be 
allowed to continue to rise even though it would 
now be eligible. If so, defer it for a bit of time. 

8. If there are any eligible (unstarted) plans left at this 
point, pick the “best” one to start. This is the critical 
operation, the one that determines the behavior of the 
scheduler. We will expand on this below. 



9. Send the first observation of the selected plan to 
sequencer for data acquisition. 

10. Wait for completion notification from sequencer. 
11. Loop back to 1. 

Priority normalization is done by converting each 
User’s plan priorities into a new value such that the mean 
priority of all of that User’s plans is 0.5. This scheme came 
from Steele and Carter1. It is the fairest of all of the priority 
schemes studied. It is done at every pass through the 
scheduling loop to allow for any-time addition of new 
requests which may change the range of priorities for the 
submitting User. 

Application of constraints and selecting the “best” next 
plan to start are the core of the scheduling system, and are 
discussed in detail below.  

Step 7C above deserves additional explanation2. This 
step tries to let a rising plan continue to rise even though all 
of its constraints are met. Without this logic, an eligible plan 
will be started as soon as its constraints are met. If it is 
rising, this may not make the best use of the observatory, as 
data acquired at higher elevations is usually of better 
quality.  

It should be noted that, after waiting for a dispatcher 
wake cycle, additional plans may become eligible, and the 
formerly single plan will have to contend with these newly 
eligible plans via the Efficiency function. This could be an 
advantage or disadvantage. Remember that, once a plan is 
started, all of its time slots are reserved. Suppose a more 
efficient plan has met constraints after the wake cycle. 
Shouldn’t this one be run anyway? If the first plan had been 
started immediately, it would have blocked the second one. 
In general, it’s better to be faced with a choice of plans and 
do the most efficient one. 

In any case, once a plan has been chosen to start, all of 
its observations’ time slots are reserved, and its first 
observation is given to the sequencer to execute. As you 
may recall, an observation applies to a single target and 
consists of one or more image-sets, each of which comprises 
one or more images at a single wavelength. The Sequencer 
performs the slew to the target, perhaps checking the 
pointing with a short validation and adjustment exposure, 
then performs an auto-focus if requested or indicated, and 
activates the auto-guider if applicable. It then commands the 
imager to acquire images per the image-sets, switching 
filters as needed. Each filter switch necessitates (at a 
minimum) a refocus, even for supposedly par-focal filters. 
In addition, if the image needs to be guided, and if the 
guiding sensor is behind the filters, the guider must be re-
started with a new exposure/cycle time. Focus changes 
arising from a filter change are handled either by a table of 
focus offsets or by auto-focus (the latter is inefficient!). 

                                                           
                                                          

2 See section 7 Rising Plan Delay 

5 Scheduling Rules 

Early simulations led to a couple of basic rules that 
guided the design. Recall that the plan is the basic 
schedulable unit, and may consist of multiple linked 
observations (targets) with specified time intervals between 
them. These scheduling rules are: 

1. Once a plan has been started, it must either run to 
completion (in one night) or fail completely3. In other 
words, a plan’s observations must be acquired as a unit. 
Time spacing between linked observations, and a 
possible “hard start time” needed for target phasing 
constraints, dictate this rule.  

2. Time separation of a plan’s linked observations must 
include a non-zero time tolerance. The scheduler is not 
perfect; therefore the observer must indicate the 
allowable variation between linked observations for 
which the acquired data will still be usable. 

3. Once a plan has been started, its linked observations 
must be considered inviolable. Nothing can pre-empt a 
running plan’s scheduled linked observations. 

For the simple case, a plan that has a single observation, rule 
1 above is intuitively obvious. However, for a plan that has 
multiple linked observations, the rules mean that a plan 
cannot be started unless the following conditions are met: 

1. All of the plan’s linked observations’ constraints can be 
met (at their scheduled time) if the plan is started now.  

2. None of the plan’s linked observations will clash with 
those of plans that have already been started, regardless 
of their priority. 

These rules lead to the following corollaries: 

1. Constraints must be applied to all observations of a 
candidate plan before starting it. The proposed plan 
start time, the estimated times needed to execute each 
of its observations, and the specified time interval 
between its observations all must be used to project 
forward each observation in time, and compute its 
constraint for that time. 

2. A higher priority unstarted plan can never force the 
failure of a lower priority running plan; it can only 
prevent a lower priority plan from getting started. 

3. The projected times for starting each of the candidate 
plan’s observations must be checked that they do not 
overlap/clash with the nominal start times and time 
spans of the remaining linked observations of plans that 
have already been started.  

4. Once constraints and timing-clash checks have been 
applied to an entire plan, it can be started with a high 
degree of confidence that it will complete successfully. 
There is, however, a non-zero chance that it will fail 
because a constraint is not met at the actual time of 

 
3 See section 5.1 Best-Efforts Plans wherein this rule may be optionally 
relaxed. 



observation. This condition can arise as a result of 
imperfect estimates of times needed for other 
observations. 

It should be clear that constraints must first be applied to all 
observations of each unstarted plan, with forward time 
projection4. If any constraints are not met, the observation 
and its parent plan are vetoed and eliminated from 
consideration during this scheduling pass. The plan will be 
re-queued and reconsidered in subsequent scheduling 
passes, as the constraints could be met at this later time. 
Thus, the veto processes eliminates plans that cannot be 
started at the current time.  

5.1 Best-Efforts Plans 

Field experience with the scheduler revealed that 
Scheduling Rule 1 (Plans must complete in a single night) 
resulted in a limitation that made some types of observing 
impractical. For example, data acquisition for photometry 
applications often requires a time series which extends over 
a long period of time. A plan with linked observations does 
provide time series capability, however if the time series 
needs to be “long”, its chances of being successfully started 
under Scheduling Rule 1 decrease.  

The nature of a dispatch scheduler is such that the 
starting time of a plan cannot be predicted. This limits time 
series to the shortest possible length that can fit into a single 
night when the plan is started at the latest possible time. 
This limitation led to a requirement for modifying 
Scheduling Rule 1 to allow a plan to be started without 
checking to see that it could be completed before being 
stopped by constraints or dawn. In addition, while the plan 
is running, a veto or failure of a linked observation in the 
time series causes the Plan to be successfully completed, not 
failed.  

This mode of treating plans could be called “do as 
much as you can” or “best-efforts”. The revised scheduler 
was modified to include an optional best-efforts flag on 
plans. If the plan is flagged as best-efforts then (a) it will be 
eligible to be started based only on its first observation’s 
constraints being met, and (b) while running, if a linked 
observation is vetoed or fails, the Plan is marked completed 
instead of failed. 

6 Application of Constraints 

The scheduler has a standard set of constraints (see Table 2) 
that may be applied. If no constraints are applied, plans will 
be eligible based solely on their time span, astronomical 
night (Sun below –18 degrees), and instrument limitations 
retrieved from the Sequencer.  

Besides testing constraints themselves, the constraint 
plug-ins also calculate a time estimate for which the “allow” 
or “veto” condition will remain. This is very important for 
scheduling efficiency, as the latter allows plans to be 

                                                           
4 See section 6 Application of Constraints for details. 

skipped during dispatching until the expiry time for the veto 
state, and the former provides time limit guidance for step 7-
C in Section 4 Scheduling Cycle.  

Table 2. Standard Constraints 

Horizon Observation must be made above the given 
elevation (with respect to the local 
mathematical horizon) 

Air Mass Observation must be made at or below the 
given air mass.  

Sky Quality Observation must be made at given (or 
better) sky quality. Four sky qualities are 
defined: excellent, good, fair, and poor.  

Dark Time Observation must be made with Moon 
“down”, namely 2 degrees below the 
mathematical horizon 

Moon 
Distance 

Observation must be made when the target 
and the Moon are separated by at least the 
given angular distance 

Moon 
Avoidance 

Observation must be made at or below the 
given moonlight level. This is expressed in 
terms of a Lorentzian weighting that is a 
combination of angular distance from the 
Moon and the illumination at its current 
phase.  

 

6.1 Strict versus Lenient Application 

The first version of the scheduler applied constraints only 
for the starting time of each observation, in order to 
minimize scheduling overhead. This was found to be 
insufficient for practical use. With this lenient application of 
constraints, it is possible for an observation to fall out of 
constraints during acquisition. Thus, at least some of the 
acquired data could fail to meet the requirements of the 
constraints.  

In the revised scheduler, application of constraints was 
changed to a strict model, wherein constraints are checked 
for both the starting time and the estimated ending time of 
each observation. Only if constraints are met at both of 
those points in time is the observation considered eligible 
for execution. 

6.2 Custom Constraints 

In addition, custom constraints can be added via a plug-
in API. Thus, applications with unusual requirements can be 
supported without changes to the main dispatcher engine. 
Custom constraints may be developed apart from the code 
base for the scheduler, and simply dropped into a specific 
directory. The next time the scheduler is started, the new 
constraint plug-in is detected, additional tables and relations 
are created in the schedule database, and the new constraint 
will appear in the schedule browser’s user interface. 



7 Rising Plan Delay 

Real world experience and parallel simulations indicated a 
significant weakness when the scheduler is under-
subscribed. Suppose that, during a particular dispatch cycle, 
there is only one eligible plan left after application of 
constraints. In this case the Efficiency function is not 
applicable. There is but one “best” choice. That single plan 
is dispatched immediately. As the run progresses through 
the night, this increasingly happens very shortly after the 
plan first meets its constraints, on the rise.  

As a result, the plan will be started well east of the 
optimum sky position, and the data will be acquired through 
nearly the maximum air mass allowed by its constraints. 
Figure 2 shows the typical behavior of a moderately loaded 
dispatch scheduler without rising plan delay. 

As the scheduler’s loading increases, this effect lessens 
because it’s more likely that multiple plans will be eligible 
in a dispatch cycle, at least one will be higher than it needs 
to be, and the Efficiency function will be able to pick the 
best one. The problem is absent in a heavily loaded situation 
as there are always plans near the meridian and the 
Efficiency function does its job well. 

 
Figure 2. Meridian position with typical dispatcher 

In principle, the solution to this problem involves letting 
rising plans5 continue to rise even though they are eligible. 
But how long should they be allowed to rise beyond the 
point at which they can first be started? Clearly, a rising 
plan cannot (or should not) be allowed to rise beyond any of 
the following points: 

1. The time at which it no longer meets its constraints 
2. The time beyond which it would extend past dawn 
3. The time at which it reaches transit 

But there are other less obvious considerations. Suppose one 
or more additional plans become eligible in the future? It is 
possible that one of these newly eligible plans would be 
selected by the Efficiency function in preference to the 
delayed rising plan. If the selected plan’s first observation 

                                                           
5 The “coordinates” of an entire plan are given by its centroid as defined in 
section 8.2 below. 

exceeds the allowable times 1-3 above, the delayed rising 
plan will fall out of constraints before this new plan’s first 
observation completes. The delayed rising plan will never 
be started. 

It should be clear that the more heavily loaded the 
scheduler is, the more likely the above scenario will arise. 
Thus, in general, delaying a rising plan’s start while it rises 
reduces its chance of being run. The longer it is delayed, and 
thus the closer it gets to one of the limits 1-3 above, the 
more likely it will not be run, or run past the meridian. 

On the other hand, if this policy is applied evenly, 
where all rising plans are delayed per the same policy, the 
effect will be to shift the start times of all such plans toward 
the future, improving their observing conditions. 
Furthermore, at the start of the run there will be both rising 
and setting plans. By delaying the rising plans, the 
dispatcher will start with the setting plans, which is 
desirable since they generally have shorter eligible lifetimes. 

Finally, as the schedule becomes more loaded, there 
will more likely be eligible plans in a more favorable 
position, and these will be selected by the efficiency 
function (see below) anyway. By allowing the less well 
positioned plans to rise, the effect is the same as simply 
keeping them eligible and letting the scheduler pick the 
most favorable. So as the schedule becomes more heavily 
loaded, the less will be the effect of delaying rising plans. 
This was proven in the simulations. 

The decision to delay a rising plan must take into 
account the shortest of limits 1-3 above, and the potential 
benefit of allowing it to rise further. Furthermore, the 
amount of time to defer the rising plan (once it has been 
decided to defer it in the first place) should be shorter than 
the threshold of the time-left used to make the deferral 
decision. This allows for some tolerance in time estimates. 
Algorithm complexity could quickly reach a point of 
diminishing returns while impacting scheduler performance.  

Therefore, it was decided to implement a simple 
algorithm for rising plan delay: If the plan’s centroid is 
rising, and if there is more than 60 minutes remaining in the 
shortest of limits 1-2 above, defer the plan. The deferral 
time is the shortest of (a) the time to centroid transit, or (b) 1 
hour before limits 1-2 above are reached.  

 
Figure 3. Meridian position with rising plan delay 



Figure 3 shows the behavior for the same set of requests 
as Figure 2, but with the rising plan delay algorithm 
included. The beneficial effects are clear. Note particularly 
that more images were acquired (81 vs. 75) because the 
westernmost plans were immediately started while the more 
eastern ones were deferred for rising plan delay6. Extensive 
simulations of this algorithm have shown that delaying 
rising plans is surprisingly effective when loading is light, 
and has an unexpectedly low impact on efficiency and total 
number of targets acquired when loading is heavy.  

8 Efficiency Function 

After application of constraints and rising plan delays, each 
remaining eligible plans is tested by computing the 
efficiency index. The eligible plan with the highest 
efficiency index is the one chosen to start now. The purpose 
of the efficiency index calculation is to decide which plan to 
start considering both the scientific priority and the best use 
of the current observing conditions. This is done using an 
Efficiency function of the form: 

( ) ( )nEn kkk∑ =
=

8

1
βΕ  

where n indexes the plan under consideration, and k indexes 
the eight efficiency terms described below.  
This generic form is taken from Steele and Carter1. 
However, the specific terms of this function, both the 
semantics of some the efficiency terms Ei(n), as well as their 
coefficient values ßi, differ in from Steele and Carter. In 
addition, new efficiency terms were added after experience 
gave rise to their need. 

The knowledge gained via the simulations and user 
feedback provided insight into the behavior of a dispatch 
scheduler, and led to two sets of standard terms and ßi 
coefficients (weights) suitable for most observing tasks. 
These are described following the descriptions of the 
individual terms, in section blah.  

The scheduler also has a mode in which the user can 
adjust the weights, giving complete flexibility. There is no 
plug-in interface for adding efficiency terms; but individual 
terms may be disabled by setting their weight to zero. By 
varying the weights, the behavior of the scheduler can be 
adjusted to meet virtually any need, or to conduct 
engineering studies using the simulators. 

After research, the details of which are beyond the 
scope of this paper, the following efficiency terms/functions 
were chosen for the scheduler: 

8.1 Scientific Priority 

The scheduler allows each User to assign their own 
scientific priorities to their plans rather than forcing 
everyone onto a single priority system. In order to assure 
that allocation of the observatory is fair, each User’s 

                                                           
6 This was confirmed by inspecting the coverage charts; the run in Figure 2 
failed to get the westernmost targets. 

priorities are transformed into a normalized system where 
the mean value of their priorities is 0.5: 

5.01 =∑ =

N
pN

i i
 

where N is the total number of plans in the system for that 
User. The normalized priority for each plan p is stored in the 
scheduler’s database and used in the Efficiency function 
calculation as shown below. 

It is planned for the future to study whether the priority 
of a plan should be scaled according to its number of linked 
observations. This would assign a weight proportional to the 
resources that the plan uses. A further refinement might be 
to weight according to the observatory time needed for the 
plan. 

In any case, the candidate plan’s normalized priority p 
is used to calculate the E1 term of the Efficiency function, 
thus 

)()(1 npnE =  
A front panel control “Ignore Priority” is provided so 

that the scheduler user can toggle between ß1=0 and the 
standard ß1 value. This is useful in special situations where 
the user wants to eliminate preference based on scientific 
priority. It is ignored if the scheduler’s efficiency mode is 
set to Custom. The control is ignored if the scheduler’s 
efficiency mode is set to Custom. 

8.2 Nearness to Transit Altitude 

It is intuitively obvious that it is advantageous to 
observe some objects at as low an airmass as possible. The 
simple interpretation of this would imply an E function of 
the form 
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where AC(n) is the current altitude of the first observation of 
the candidate plan n. However, this would unfairly favor 
objects whose declination is near the latitude of the 
observatory (as observed by Steele and Carter1). A better 
criterion is the distance of the object from its transit altitude. 
This implies an E function of the form 
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where AC(n) and AT(n) are the current and transit altitudes of 
the first observation of  plan n.  

But there is an additional consideration that is non-
intuitive but became obvious after early simulations: If the 
candidate plan contains multiple linked observations of 
different targets, it would be incorrect to use the current 
altitude of the first (or any other) of the plan’s observations 
in the above test.  

Instead, the scheduler uses the centroid of all of the 
plan’s linked observation equatorial coordinates as the 



“coordinates” of the plan as a whole. The centroid 
coordinates are then converted to altitude using the local 
sidereal time (LST) projected forward from the current LST 
by half of the plan’s calculated time span, yielding a 
centroidal altitude Ā for the plan as a whole. Thus, 
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where ĀC(n) and ĀT(n) are the current and transit centroid 
altitudes of plan n.  

Simulations revealed that the centroid method is an 
excellent way to treat a plan with multiple linked 
observations at possibly different coordinates. It turns out 
that the plan is most often started at an efficient time, and 
the individual observations are done as closely as practical 
to their transit altitude, on average.  

In section 8.7 below, an experimental alternative to 
Transit Altitude (called Highest Altitude) is discussed. If its 
weight E7 is greater than zero, then E1 must be set to zero as 
these two terms are mutually exclusive. 

8.3 Slewing Overhead 

It is more efficient to observe nearby targets when 
possible, so a slewing overhead term is included in the 
Efficiency function. Considering only the time needed to 
slew to the target unfairly penalizes observations that take a 
comparatively long time to complete. For example, if a 
candidate observation is expected to take an hour to 
complete, a thirty-second slew is not significant. If the 
observation consists of a single ten-second exposure, the 
thirty-second slew has a significant impact on efficiency. 
Thus, slewing overhead is represented by an E function of 
the form 

)(
)(3

OS

O

tt
tnE
+

=  

where tO is the estimated time needed to complete data 
acquisition for the observation, and tS is the estimated 
slewing time needed to get to the target coordinates of the 
first observation of the candidate plan before starting data 
acquisition. The sequencer provides the scheduler with a 
time-to slew estimate, given a new target’s position, and this 
is tS above. 

Note that this term does not consider the time needed to 
slew to possible subsequent linked observations in the 
candidate plan. There is no way to know the starting point 
for such slews, as the scheduler is intrinsically dynamic.  

A front panel control “Prefer Short Slews” is provided 
so that the scheduler user can toggle between ß3=0 and the 
standard ß3 value. The control is ignored if the scheduler’s 
efficiency mode is set to Custom. 

8.4 Retry Count 

The scheduling rules state that a plan must either 
complete successfully within a night, or fail completely. In 

cases where a plan fails due to changes in sky condition, 
weather shutdowns, or (rare) scheduling errors that cause an 
observation’s specified time window to be missed, the 
scheduler re-queues the plan, making it eligible to be started 
again. This could be in the same night (if constraints can 
still be met) or it may cause it to be delayed until a 
succeeding night. 

In order to provide some level of preference to failed 
and re-queued plans, the scheduler keeps a count of the 
number of times a plan has been re-queued due to failure. 
This retry counter is used to provide a boost in preference in 
the Efficiency function. This term is represented simply as  

( )3)(4 ≤= RRnE  

where R is the retry count (= 0 if the plan is being started for 
the first time). Furthermore, R is limited to 3, preventing a 
repeatedly failing plan from being unfairly weighted.  

The intention is to have the ß4 -weighting coefficient set 
to a low value, providing only a mild boost in priority for 
re-tried plans. Setting this to a high value could cause a 
failed plan to become stuck in a failure loop. Further study 
is planned to look for instabilities that might be caused by 
this term in the Efficiency function.  

A front panel control “Prefer Failed plans” is provided 
so that the scheduler user can toggle between ß4=0 and the 
standard ß4 value. The control is ignored if the scheduler’s 
efficiency mode is set to Custom. 

8.5 Meridian Crossing 

When the telescope is on a German equatorial mount, a 
high cost is associated with every crossing of the celestial 
meridian. The mount must “flip”, which can take 
considerable time. Besides the actual flip time, additional 
time may be needed to assure precise pointing to the sky 
after the flip due to non-orthogonality between the right 
ascension and declination mechanical axes.  

Thus, meridian crossings have a significant impact on 
efficiency. The scheduler includes a meridian crossing 
“penalty” term in the Efficiency function, as  

MnE −=1)(5  

where M is 1 if a meridian crossing is required to reach the 
observation’s target coordinates, and 0 if no meridian 
crossing is required.  

For non-German mounts, the ß5 weighting coefficient is 
set to 0, effectively eliminating this term from the 
Efficiency function.  

A front panel control “Avoid GEM Flip” is provided so 
that the scheduler user can toggle between ß5=0 and the 
standard ß5 value. The control is ignored if the scheduler’s 
efficiency mode is set to Custom. 

8.6 Lateness 

Early in the development and testing of the scheduler, it 
became apparent that, with a moderate to full load, targets 
which are setting in the west during the evening might be 



left behind as the scheduler concentrates around the 
meridian. Since a given target sets even earlier on 
subsequent nights, the problem worsens until the target 
becomes completely unreachable for many months. 

The Rising Plan Delay algorithm can help this 
somewhat as previously described. Nonetheless, it was 
determined that a “lateness” term was needed for 
applications where westernmost targets are more important 
then those at the meridian. The scheduler has a mode 
selector that allows the user to select “Prefer Meridian” 
versus “Prefer West”. The selector enables either the Transit 
Altitude or Lateness terms, respectively. The two terms are 
never used together in the standard modes of scheduler 
operation. 

Ideally, when calculating a lateness term, the time 
remaining before the (currently eligible) plan again becomes 
ineligible for any reason should be used. Thus 
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where Δtrem(n) is the time (hours) until the candidate plan 
would become ineligible due to falling out of constraints or 
falling below the observing horizon. 

8.7 Highest Altitude 

Field experience and simulation revealed a limitation in the 
Transit Altitude term. Some rising targets will never reach 
their transit altitude before dawn. This led to an 
experimental alternative to the Transit Altitude term.  

This new term uses the highest altitude reached by a 
rising plan’s centroid during the current observing night. 
For targets which have already transited at dusk, the transit 
altitude is still used, avoiding interaction with the Lateness 
term described in section 8.6. For targets that do reach 
transit altitude during the night, its effect is identical to 
Transit Altitude. However for eastern targets which rise late 
and don’t transit, the Highest Altitude term will give the 
same boost level for those targets’ highest altitude as does 
Transit Altitude for setting targets and targets that do transit 
during the night.  

The term is calculated using the candidate plan’s 
centroid, as in Transit Altitude, but instead, for rising targets 
only, using the highest altitude reached by the target before 
dawn. Thus 
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Where AH(n) is the highest altitude reached by the nth 
plan’s centroid before dawn, for a rising target, and AT(n) is 
the transit altitude as before. If E7 is set to a non-zero value, 
then E1 must be set to zero, and vice versa. 

The effect of this term is still under investigation. Early 
results are encouraging, and if eastern targets’ efficiency is 

improved without significant effect on transiting targets, it 
will be adopted in place of Transit Altitude. At present, the 
scheduler supports both terms, and E7 may be activated in 
place of E1 by adjusting the weights in custom efficiency 
mode. 

8.8 Observing Conditions 

One of the scheduler’s standard constraints is sky condition. 
Application of this constraint prevents a plan from getting 
started if sky conditions are poorer than required. However, 
if sky conditions are better than required, efficiency dictates 
that the better conditions should not be wasted. If there is a 
lower priority plan whose first observation requires the 
better conditions, it should perhaps be run in preference.  

The simplest scheme would be to require that 
observations be made only at their required conditions. This 
is not efficient, though, as it would prevent usage in better 
conditions than needed even when there is nothing else to 
do. Instead, we use a term suggested by Steele and Carter.  

In the scheduler, sky condition can be one of four 
values, excellent, good, fair and poor. We assign numeric 
values of 3, 2, 1, and 0 to these conditions, respectively. 
Then we calculate the E term as 
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where CR is the required condition number and CA is the 
actual condition number.  

8.9 Standard Efficiency Modes 

It should be clear that end users will be bewildered by the 
effects of adjusting efficiency weights and the resulting 
changes in behavior of the scheduler. Therefore, the 
scheduler was designed with user controls allowing two 
standard modes of operation, plus a third mode in which the 
efficiency weights are user-adjustable: 

1. Prefer Meridian 
2. Prefer West 
3. Custom 

In addition, as previously described, the Priority, Slew 
Distance, Meridian Crossing, and Retry Count terms may be 
enabled or disabled via user controls. When enabled, and 
when the scheduler is running in mode (1) or (2) above, 
standard weights are used. When disabled, the 
corresponding weight is set to zero, eliminating the term 
from the efficiency calculation. To summarize, these 
additional user controls are: 

1. Prefer Short Slews (slewing overhead) 
2. Avoid GEM Flip (meridian crossing) 
3. Prefer Failed plans (retry count) 
4. Ignore Priority (priority) 



Note that the Ignore Priority control is provided for 
engineering purposes; ordinarily the user would never 
suppress the effect of scientific priority. Table 3 shows the 
efficiency weights for the two standard scheduling modes: 

Table 3. Standard Efficiency Weights 

Term Prefer Meridian Prefer West 
Priority 1.0 1.0 
Transit Altitude 0.7 0.0 
Slewing Overhead 0.4 0.4 
Retry Count 0.5 0.5 
Meridian Crossing 0.5 0.5 
Lateness 0.0 0.7 
Highest Altitude* 0.0 0.0 
Observing Conditions 0.4 0.4 

* Experimental, available only in Custom mode. 

9 TOE Interrupt Facility 

Another issue that appeared during usage of the first version 
of the scheduler was the need for some sort of “target of 
opportunity” (TOE) interrupt. The dispatch scheduler is 
well-suited to this requirement. The obvious use case is 
Gamma Ray Burster (GRB) follow up. The transient nature 
of GRBs is such that follow up observations must begin 
within a few minutes of a detection by one of the satellites 
such as Swift7.  

Images being acquired during scheduler operation may 
span many minutes. Thus, it was determined that the 
scheduler must have a way to immediately halt data 
acquisition by the sequencer and optionally stop any 
running plans (those which have uncompleted linked 
observations). The latter is needed in order to make way for 
newly added urgent observing requests for GRB follow up. 
The fact that the scheduler can accept new observing 
requests while running makes this sort of thing possible.  

To make this facility most general, it was decided to 
provide an externally accessible application programming 
interface (API) for monitoring tools. This API not only 
provides the interrupt signaling capability, but also a set of 
functions that monitoring tools can use to determine the 
observability of a potential TOE. Uses of this facility will be 
the subject of a future paper. 

10 Simulation Design Issues 

The initial development of the scheduler used simulations 
throughout. In the early design phase, narrow-focus 
simulations were used to evaluate various candidate terms in 
the Efficiency function. These simulations are beyond the 
scope of this paper. They served primarily to assist in the 
selection of terms in the Efficiency function.  

Once the framework was integrated into a working 
scheduler, a second phase of simulations was undertaken to 

                                                           
7 See http://swift.gsfc.nasa.gov/docs/swift/swiftsc.html 

investigate its behavior, look for anomalies, and get some 
feel for its performance under various conditions. In 
particular, the effects on behavior due to variations in the ßi 
weighting coefficients were studied. 

After the initial release of the scheduler to commercial 
users, their feedback was used to drive further refinement of 
the design and implementation. This ongoing user-driven 
dev elopement yielded, among many other things, the 
Rising Plan Delay algorithm described in Section 7. It 
should be noted that, in contrast to most other observatory 
schedulers, the present scheduler was designed to withstand 
the rigors of widespread usage by non-technical 
astronomer/users and the wide variations in requirements of 
these users.   

The revision to this paper occurred simultaneous with a 
review of the scheduler, following 2 years of deployment in 
the field at over a dozen sites. Part of this review included a 
new round of simulations following design changes. The 
primary purpose of these simulations was to support 
regression testing (assurance that changes did not impair 
performance and/or reliability). It was found that the design 
changes during the review were in fact improvements in 
most cases, and that there were no regressions. 

These simulations will be described along with a few 
illustrative results. 

Table 4. Load Generator Mission Types 

Mission type Fraction 
of total 
load* 

Description 

Random single 
image 

0.6 Single exposure, 
random interval 240 
sec mean, 60 sec. 
std. dev. Random 
priority mean of 5, 
std. dev. of 2. 

LRGB 
Astrophotography 

0.2 4 exposures, base 
(L) exposure of 300 
sec. Scientific 
priority of 3. 

Asteroid/Comet 
search and follow-
up 

0.2 4 observations, each 
image 180 sec. 
integration, spaced 
45 min apart with a 
+/- 10 min 
tolerance. Scientific 
priority of 5.  

* with all workload types turned on. 

 

10.1 Input to Simulations 

In order to provide real-world conditions for 
simulations, a built-in facility is provided for generating a 
Project consisting of multiple plans of various kinds. The 
generator is capable of creating plans that are representative 
of the astronomy missions shown in Table 4. When 
generating a test workload, it is possible to selectively 
include or exclude each of these mission types.  



The fraction of the total workload represented by each 
mission type is variable. In Table 4, the “fraction of total 
load” values given are those that result if all of the mission 
types are selected. If one or more mission types are 
disabled, the relative mix changes based on the relative 
frequency of the remaining mission types. Some simulations 
used a sub-set of the remaining plan types, and this will be 
clearly indicated in the description of the simulation. 

Target/observation locations are generated randomly 
above 35 degrees elevation over the “dark sky” for the 
entire night on the date and geodetic location set in the 
scheduler. For plans with linked observations of different 
targets, it is possible for targets to be unreachable due to the 
timing. This is a real world. 

Finally, the workload for the night can be set to one of 
the following levels: 

1. Lightly booked (20% of the night) 
2. Fully booked (70% of the night) 
3. Over-booked (150% of the night) 

The percentages refer to the amount of time that all of the 
scheduled observations are estimated to require, not just 
shutter-open time. The overhead times are taken into 
consideration. 

10.2 Simulated Sequencer 

In order to create as realistic an environment as possible, a 
simulated sequencer was built and attached to the 
scheduler’s’ sequencer interface. The simulated sequencer 
looks at the dispatched observation and its image-sets, and 
simply creates a time delay equal to that which a real 
observatory would require to complete the observation. The 
following common process items are given separate time 
estimates. The actual values of the timing parameters are 
shown in Table 5 below. 

1. Slewing time (based on rates and settling time, runs 
start with telescope at parked position 0 HA, 0 Dec) 

2. Guider startup time (for “long” images only) 
3. Filter switching time (assumes focus offsets 

supported) 
4. Imager download time (varies by binning) 
5. Post processing time (plate solving, calibration, 

stacking) 

The sequencer simulator can be configured to add a 
random variation to the timing values. This is used to test 
the robustness of the dispatcher in the face of inaccurate 
time estimates. In addition, the sequencer simulator can be 
configured to fail observations randomly. Failure of any of 
the images in an observation will cause the observation (and 
the plan) to fail, so the more images are in a plan, the more 
likely it is to fail, all else being equal.  

Table 5. Sequencer Simulator Timings 

Slew rate 3.5 degrees/second 
Slew settling  10 seconds 
Guider startup  30 seconds 
Minimum unguided 
exposure interval 

120 seconds 

Imager download  20 seconds 
Filter switching  20 seconds 
German flip  90 seconds 
Auto-focus  60 seconds 
Image post-processing  5 seconds 
Timing Noise (uniform 
distribution) 

5% of interval* 

* Disabled for some simulations. 

10.3 Time Simulation 

It is clearly required that simulated time be accelerated 
for scheduler simulations. Since scheduling itself is a CPU 
and disk/database bound activity, it is not clear how to treat 
scheduling time as part of the overall observatory efficiency. 
The solution is to accelerate the clock only during the time 
the sequencer simulates acquiring the data for the 
dispatched observation and image-sets and when the 
scheduler is sleeping (no work to do). The clock runs at real 
time during the scheduling phase. This most accurately 
reflects the effect of scheduling time on overall efficiency. 
All sources of time, including time stamps in the log file, 
come from the 2-mode clock. 

11 Simulations and Results 

This section presents the results of some of the simulations, 
showing the effects of varying the ßi -weighting coefficients 
on timing and hour angle at acquisition. Two data sets were 
generated: one consisting of random targets of one exposure 
each, with random exposure intervals and random priorities, 
and the other consisting of a mixture of the random targets 
and sets of random targets of four time-spaced linked 
observations of each with fixed exposure intervals and 
priorities. See Table 4 for specifics.  

The number of targets was chosen for a moderate 
(70%) load and an overloaded (150%) level. The test loads 
were generated by using the timing information in Table 5, a 
latitude of 33N, longitude of 111W, a starting time at 
astronomical twilight on March 25, 2006 (UTC), and 
generating random targets computing the total time needed 
to acquire each image of that target, and adding that to a 
running total. Since slewing time is not known (it is order-
dependent) a guess of 45 degrees is used. When the running 
total reached 70% of the total night-time from astronomical 
twilight to astronomical twilight, generation was stopped. 
For example, since the random targets also had randomly 
varying exposure intervals, sometimes the guider would be 
needed (incurring additional guider startup time).   

Each of these target sets were simulated over a night 
three times, with each of just three of the terms in the 



Efficiency equation set for ßI = 1.0 and the rest set to 0.0 
(disabling them). The three terms studied were Priority, 
Transit Altitude, and Slew Time.  

11.1 Random Single Images – Moderate (70%) Load 

The first set of simulations uses a Project consisting of 69 
plans, 1 observation and 1 image-set in each with no 
constraints apart from being above the observing horizon of 
25 degrees. Figure 4 shows the distribution of targets in 
equatorial coordinates.  

Coverage Chart for RunDetail.txt (69 targets)

-20

-10

0

10

20

30

40

50

60

70

80

D
ec

 
Figure 4. Targets for single image moderate load test 

Priorities are random with normal distribution, mean of 5.0, 
and standard deviation of 2.0. Exposure intervals are 
random with normal distribution, 240 second mean, 
standard deviation of 60 seconds. 

11.1.1 Priority Only (moderate load) 
The first simulation with the random-images data set was 
run with only the Priority term in the Efficiency equation. 
This caused the dispatcher to always pick the eligible plan 
that has the highest scientific priority. Figure 5 below shows 
the resulting distribution of acquisition locations relative to 
the meridian.  

Coverage Chart for RunDetail.txt (66 targets)
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Figure 5. Target sequence for 100% priority (moderate) 

For this test, 66 of the 69 available plans were completed. 
Analysis of the log file of the run confirmed that the plans 
that were not run were those with the lowest scientific 

priority. Because, in this scenario, the targets were picked 
without regard to position and slewing time, the excessive 
motion (clearly visible in Figure 5 and Figure 6) adversely 
affected the efficiency of the dispatcher. 

Meridian (HA*Cos(Dec)) for RunDetail.txt (66 targets)
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Figure 6. Meridian chart for 100% priority (moderate) 

11.1.2 Transit Altitude Only (moderate load) 
Next, the same random-images data set was re-run, this time 
with only the Transit Altitude term in the Efficiency 
equation. This caused the dispatcher to always pick the 
eligible target that is closest to its transit altitude. The 
results of this test are shown in Figure 7 and Figure 8 below. 
Predictably, most motion was in declination and the 
deviation from the meridian was far less. As the scheduler 
ran out of plans to choose from, it started picking the 
remaining targets which were all to the east of the meridian, 
so the trend is to the east (positive hour angle).  

In this case, 65 of the 69 available plans were 
completed. Analysis of the log file revealed that those that 
were missed were early evening targets (lowest right 
ascension) whose meridian passage had already occurred. 
At the beginning of the night, there are plenty of targets 
approaching their meridian passage, and these are of course 
given preference in this scenario (transit-altitude-only). By 
the time the dispatcher got low on eligible targets, those 
early targets had dropped below the 25-degree altitude limit 
in the west.  

Coverage Chart for RunDetail.txt (65 targets)
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Figure 7. Target sequence for 100% transit alt. (moderate)  



Meridian (HA*Cos(Dec)) for RunDetail.txt (65 targets)

-5

-4

-3

-2

-1

0

1

2

3

4

5

H
A

 C
os

(D
ec

)

 
Figure 8. Meridian chart for 100% transit alt. (moderate) 

11.1.3 Lateness Only 
Next, the effect of the (revised) Lateness term was 
investigated at moderate load. This resulted in the dispatcher 
trying to choose the most westward targets, as shown in 
Figure 9 and Figure 10 below. Again, however, when the 
dispatcher ran out of targets, it started picking the ones to 
the east as they rose and came into constraints. In this test, 
all 69 possible plans were successfully completed, since the 
dispatcher started with those that were about to set, rather 
than starting near the meridian while some westward targets 
set and became inaccessible, as in the previous test. 
 

Figure 9. Target sequence for 100% Lateness (moderate) 
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Figure 10. Meridian chart for 100% Lateness (moderate) 

11.1.4 Slewing Distance Only (moderate load) 
The random-images data set was run again with only the 
Slew-Overhead term in the Efficiency function. This caused 
the dispatcher to always pick the plan whose target is closest 
to the previous one. The results of this test are shown in 
Figure 11 and Figure 12 below. Minimizing slew time 
allowed the all 69 plans to complete, and as both charts 
show, the dispatcher usually selects the closest target from 
the previous one, wandering across the sky to achieve this 
goal. Slewing distances become large towards the end of the 
run as it does the final few targets. 
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Figure 11. Target sequence for 100% slew dist. (moderate) 
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Figure 12. Meridian chart for 100% slew dist. (moderate) 

11.2 Random Single Images – Overload (200%) 

The effects of the priority and slewing distance terms in the 
Efficiency function do not change with loading. Therefore 
the over-loaded tests are presented only for the second and 
third cases above (Transit Altitude and Lateness only).  

In this series, the number of requested targets was 
increased to 200% of the estimated maximum targets that 
could be acquired (again given the same observing overhead 
times as well as imaging times as in the previous tests). This 
resulted in 188 total target requests. The individual targets 
were generated using the same random priorities and 
exposure intervals as already described (though priority was 
ignored in these tests for clarity, as already explained). 

11.2.1 Transit Altitude Only (over-loaded) 
The target sequence chart in Figure 13 shows the sky 
distribution of the targets used in the 200% over-loaded 
tests, as well as the targets actually acquired when using 
only the transit altitude term in the Efficiency function. As 
expected, both early and late targets were skipped, in 
preference for those that happened to be nearest to the 
meridian at each dispatch cycle. This resulted in targets that 
were neither early nor late also being skipped, simply 
because there were too many to acquire.  



The meridian chart in Figure 14 clearly shows the effect 
of the transit altitude term of the Efficiency function when 
the scheduler has more work requested than it can do. At all 
times there are many plans eligible, thus the Efficiency 
function directs the scheduler to choose the plan nearest to 
the meridian as its next best. Only 93 plans were 
successfully completed, however. 

Coverage Chart for RunDetail.txt (93 targets)

-20

0

20

40

60

80

D
ec

Observed
Skipped
Never Eligible

 
Figure 13. Target sequence for 100% transit alt. (overload) 
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Figure 14. Meridian chart for 100% transit alt. (overload) 

11.2.2 Lateness Only (over-loaded) 
With only the Lateness term in the Efficiency function, the 
target sequence chart in Figure 15 shows a total preference 
for the earliest targets. In this case, more plans were run 
(106 versus 93), presumably because no early targets are 
lost, and the telescope stays to the west as much as possible.  

Coverage Chart for RunDetail.txt (106 targets)
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Figure 15. Target sequence for 100% lateness (overloaded) 
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Figure 16. Meridian chart for 100% Lateness (overloaded) 

11.3 Effect of Rising Plan Delay 

Next, the effects of Rising Plan Delay were investigated at 
both moderate load (where its effects should be beneficial) 
and over-load (to see if it has detrimental effects). Priority 
and Slew Distance terms were disabled for clarity. The same 
sets of observing requests for moderate and overload cases 
were used. 

11.3.1 Transit Alt. and Rising Plan Delay (moderate) 
At a moderate load, the beneficial effects of Rising Plan 
Delay are clear when comparing Figure 18 with Figure 8 
(same case but without Rising Plan Delay). All 69 possible 
plans were acquired. Most were acquired very close to the 
meridian, well above their constraints. Only early and late 
targets were (necessarily) acquired away from the meridian.  
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Figure 17. Target sequence for 100% Transit Altitude 

with Rising Plan Delay (moderate) 
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Figure 18. Meridian chart for 100% Transit Altitude 

with Rising Plan Delay (Moderate) 

11.3.2 Lateness and Rising Plan Delay (moderate) 
With Rising Plan Delay in effect, switching from 100% 
Transit Altitude to 100% Lateness caused very little change 
in the behavior of the dispatcher under moderate load. 
Again, all plans were completed. The only differences 
appeared at the beginning and end of the run, where the 
early targets were acquired earlier (and in a more favorable 
position) and some late targets were acquired in less 
favorable positions. 
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Figure 19. Target sequence for 100% Lateness 

with Rising Plan Delay (moderate) 
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Figure 20. Meridian chart for 100% Lateness 

with Rising Plan Delay (moderate) 

11.3.3 Transit Alt. and Rising Plan Delay (over-loaded) 
Comparing Figure 22 with Figure 14 shows that the primary 
effect of Rising Plan Delay on an over-loaded schedule with 
Transit Altitude only is to allow more plans to be completed 
(109 versus 93), a benefit. Figure 22 shows a few deviations 
from the meridian through the run, but overall there seems 
to be no detrimental effect.  
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Figure 21. Target sequence for 100% Transit Altitude 

with Rising Plan Delay (over-loaded) 
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Figure 22. . Meridian chart for 100% Transit Altitude 

with Rising Plan Delay (over-loaded) 

11.3.4 Lateness and Rising Plan Delay (over-loaded) 
Comparing Figure 24 with Figure 16 shows that the effect 
of Rising Plan Delay on an over-loaded schedule with 
Lateness only is minimal. Again, more targets are acquired 
(though only a few, 108 versus 105), and there seem to be 
no detrimental effects. Figure 24 shows virtually the same 
target positions as Figure 16. 
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Figure 23. Target sequence for 100% Lateness 

with Rising Plan Delay (over-loaded) 
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Figure 24. Meridian chart for 100% Lateness 

with Rising Plan Delay (over-loaded) 

11.4 Combined Single and Quadruplets 

The final set of simulations to be presented consists of 
combinations of plans containing random single images and 
plans each containing four linked observations (one 180-
second image of each) of the same target (a simulated 
asteroid follow up). The linked observations were spaced 45 
min apart with a 10 min. The dispatcher was configured to 
enable Rising Plan Delay and use only the Transit Altitude 
term in the Efficiency function. As before, other Efficiency 
terms such as priority were ignored for clarity. Again, the 
goal was to assure that Rising Plan Delay does not adversely 
impact the operation of the scheduler. 

11.4.1 Combined Plans (moderately loaded) 
The moderate load combined test consisted of 42 plans total, 
with 21 being random single images as previously described 
and 14 being simulated asteroid follow up plans with 4 
linked observations as just described. Figure 26 shows that 
Rising Plan Delay is effective in preventing eastward drift 
of observing position as before. Of course there are 
deviations away from the meridian for the plans with linked 
observations. It is worth noting that, apart from early 
evening plans, the distribution of observing position about 

the meridian is roughly symmetrical. This was not the case 
before the introduction of Rising Plan Delay. 
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Figure 25. Target sequence for combined plans (moderate) 
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Figure 26. Meridian chart for combined plans (moderate) 

12 Conclusions 

The simulations results show that a dispatch scheduler is a 
practical (and in some ways, superior) alternative to queue-
based optimizing schedulers. It has the following 
advantages: 

1. Responds to changes in observing conditions and 
dispatches requests that can be done in the current (or 
worse) conditions while trying to do the ones that must 
be done in the current (or better) conditions. 

2. May be interrupted by bad weather, and will resume by 
dispatching the best observations instead of merely 
delaying uncompleted ones (which will be west of their 
originally planned places). 

3. Accepts new observing requests during the run and 
makes them immediately available. 

4. Allows modification of unstarted requests at any time. 
5. Will retry failed observations automatically.  

It should be noted, however, that a dispatch scheduler is not 
applicable in all situations. At one end of the spectrum is a 
plan with many short exposures, such as used by a 



supernova search program. In this case, observing efficiency 
is paramount. The additional dispatch time between (very 
short) plans, and the randomness of the traversal sequence 
between targets, may significantly impact the total number 
of images that can be acquired in a run. For example, 3 
additional seconds of dispatch time over 600 images reduces 
observing time by a half hour. At the other end of the 
spectrum is the astro-photography application in which a 
single target is imaged for long periods of time, up to the 
entire night. In this case, dynamic scheduling is probably 
unnecessary. 

12.1 Rising Plan Delay 

The behavior of the revised dispatcher with Rising Plan 
Delay conditions exceeded expectations. It seems clear from 
the evidence presented that Rising Plan Delay solves the 
“eastward drift” problem by improving the observing 
positions for light and moderate schedule booking levels, 
while having no adverse effects on scheduler behavior under 
over-booked conditions. More tests are needed, however, to 
validate “edge conditions” and to check for stability 
problems when recycling plans that have failed. For now, 
plans are not automatically recycled. 

13 Revision Status 

This May 2006 paper is a revision to the paper of the 
same title originally submitted for review and publication to 
the Society for Astronomical Sciences on March 30, 2004.  
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